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PREFACE

This book contains a selection of the lectures presented at the Euromech Colloquium 255, held at
the Liborianum, Paderborn, from 31 October to 2 November 1989. The subject of the Colloquium
"Thermal Effects in Fracture of Multiphase Materials" attracted about 50 scientists from 13 coun-
tries. Several well known scientists who are active in research on thermal effects in fracture proces-
ses were present at the Colloquium as lecturers (29 lectures were delivered) as well as valuable
participants of the intensive discussions which took part during the sessions, coffe breaks and lunch
times. The closing session of the Colloquium was devoted to a general discussion on the trends in
the development of the research in the field, the prospects of the theoretical research, new materials
(composites, ceramics eftc.), and the trends in technological applications. Over twenty comments
and remarks have been made during this final general discussion, showing the interest of the audi-
torium in such an exchange of viewpoints. However, this discussion is not reflected in this volume.

The Colloquium has been subdivided into six sessions:

1 “Thermodynamics of Fracture Processes"

II- "Fracture of Nonhomogeneous Solids"

I "Thermal Cracking of Heterogeneous Materials"
IV-VI  "Fracture Phenomena in Composite Systems I-III"

One of the main topics in session I consisted in the description of the influence of thermal effects
on shear band localization failure. Thereby shear bands nucleate due to the presence of local
inhomogeneities causing enhanced local deformation and local heating where thermal effects influ-
ence especially the microdamage process. Further, the localization of plastic deformation within
shear bands under the consideration of thermal effects and induced anisotropy on the localisation
phenomenon was modelled by a thermoelastoplastic material model for the first stage of the flow
process and by a thermoelastic-viscoplastic material model including an advanced micro-damage
process for the postcritical behaviour within shear bands.

Moreover, fracture processes in thermoelastoplastic materials were studied by a specialization of
the thermodynamic energy balance equations leading to the establishment of a fracture criterion for
thermal cracking of nomhomogeneous materials. This criterion also delivers information concer-
ning the prospective crack path of a propagating crack.

Further investigations reported in the sessions II and III concerned fracture mechanisms at free sur-
faces of heterogeneous materials as well as thermal cracking of solids with local inhomogeneities
andsmicrocracks:» Therebysdiscontinuoussthermal strains cause microcracking at the surfaces of
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structures, particularly under cyclic thermal load. By considering a model of a bimaterial interface
intersecting a free surface the component of the stress tensor which is parallel to the free surface
has a discontinuity at the crossing point, resulting in a very high stress variation under cyclic ther-
mal load which should be the origin for the initiation of edge cracks. Furthermore, discontinuous
plastic strains are also the cause of very high stresses at the crossing point where a jump relation
between plastic strains and some stress components can be derived which has an analogue in the
jump relation for thermal stresses. Special studies dealt with the influence of the cooling rate on the
stress intensity factors in thermal shock problems of thwo-phase cracked composite structures. Re-
sults were given for a surface crack, a crack terminating at or intersecting the material interface
and a crack initiating from the interface.

Besides, the sessions IV-VI of the Colloquium concerned especially thermal cracking of fibrous
composites, CFRP-laminates as well as of shape memory alloys and damaged particle strengthened
ceramics. Thereby the methods of the micromechanical and the macromechanical approach in com-
posite mechanics, respectively, were applied in order to reach an understanding of the complicated
cracking mechanisms under the essential influence of thermal effects. The solutions of the associa-
ted boundary value problems of thermoelasticity as well as thermoviscoplasticity were obtained by
using modern methods of continuum mechanics, for instance finite element and integral equation
methods.

The conference gave an overview about the important influence of thermal effects on the fracture
behaviour of multiphase materials. It can be further stated that the scientific and social success of
the conference represented a confirmation of the basic idea of Euromech-Colloquia to discuss parti-
cular topics in science in simall working parties of specialists.

Finally, the two organizers are grateful to the Euromech Committee for approving this Colloquium
as well as to the Stiftung Volkswagenwerk, the DAAD, the Nixdorf Computer AG, and the
Universitatsgesellschaft Paderborn for some financial support. The help of the administrative staff
of the Laboratorium fiir Technische Mechanik at Paderborn University during the planning phase
of the Colloquium and during the Colloquium itself was indispensable.

K.'P. Herrmann Z. Olesiak
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Some Considerations on the Thermodynamics of
Fracture

Hein Peter Stiiwe *

Abstract

It has become fashionable to discuss mechanical phenomena such as fracture
within the framework of thermodynamical equations. This should, of course, never
lead to any error; on the other hand, the fertility of such considerations is often
overestimated. In this paper it will be tried to illustrate some special points from
the experimenter’s point of view:

1 Energy necessary to form a fracture surface

The basic term of fracture mechanics is usually written in the form

dl' +dU — dW

T 1)

where I' represents the surface energy, U the elastic strain energy. and W the potential
energy of applied forces. For uniaxial tension on a crack in mode I

W =2U (2)

so that (1) reduces to
dl' —dU
da
(For more complicated situations see, e. g., [1]).
If the term in (1) or (3) is negative, the crack will grow. In the original approach
by Griffith, the term I' was thought to be reversible so that there exists an equilibrium
position where (1) or (3) are zero and from which the crack may either shrink or grow

leading to
[29F
, == — 4
e Aa “)

where A is a geometrical factor and v is the specific surface energy. A typical value for v
is 2 J/m? it has been entered in table L. :

“ o

*Qsterreichische Akademie der Wissenschaften, Erich-Schmid-Institut fiir Festkérperphysik, Leoben,
Austria



Table 1:
J/m?
v 2
75 (eq. (5), (6)) | 2.10
U (eq. (8)) 2.10°

" In the fracture of real engineering materials vyp is much higher. It can be determined
from a valid K¢ test as

1B =g (5)

A Kjc test is valid when plastic deformation is limited to a “process zone” near the tip of
the advancing crack which is so small that LEFM can be used to anlyse the experiment.
Such fractures without large scale plastic flow are often called “brittle” by mechanical
engineers. Their fracture surfaces, however, show the dimple structure typical for ductile
fracture—at least in materials with high values of K¢ as shown is table I.

The energy necessary to form such a fracture surface is [2,3]

’)’B = 6ho.5' (6)

where @ is a suitable average flow stress, S & 1/4 and ho characterizes the roughness of
the fracture surface. It is therefore possible to determine the Kjc value of a fractured
material just by studying the geometry of the fracture surface (the stress-strain curve
must also be known) [4].

Almost all of this energy is dissipated as heat. Therefore, when yp is used in expres-
sions like (1) and (3) it should be kept in mind that it is an irreversible term. (To be
exact, a second term should be added in eq.( 6) which contains the newly created free
surface multiplied by 4. Comparison with table I shows that this second term may be
safely neglected!).

2 Softening in low cycle fatigue

Fig. 1(a) shows the result of a test in low cycle fatigue. The apparent flow stress decreases
with accumulated strain until the specimen fails catastrophically.

It is tempting to explain such experiments by damage accumulation. Fig. 1(b) shows
that it is easy to choose the parameters of damage accumulation theory in such a way
that the experiment is well described.

It would be too hasty, however, to take such an agreement as evidence for damage
accumulation. This has been shown in the experiment illustrated in fig. 2.

Single crystals of copper of various orientations were predeformed by cold rolling and
then subjected to low cycle fatigue. Their flow stress decreased with accumulated strain
as shown in fig. 2. The electric resistivity of the samples was measured before and after
the test-and-was:seen-to-decrease:during the test. Ascribing the decrease in resistivity to
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Figure 1: (a) Critical shear stress of Aluminium subjected to low cycle fatigue in torsion
[5] (b) Shear stress vs number of fatigue cycles according to a damage accumulation model
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Figure 2: Decrease of flow stress of predeformed copper single crystals during low cycle
fatigue[7]

a decrease in dislocation density the change in flow stress could be adequately explained
[7.

Thermodynamically to two interpretations are entirely opposite: During damage accu-
mulation the specific internal energy of the material should increase whereas by dislocation
annihilation it will decrease.

3 Energy dissipated in fatigue

The energy dissipated during one loading cycle can be quite easily measured in low cycle
fatigue as the hysteresis of the stress/strain curve. This becomes increasingly difficult as
stresses and strains decrease in high cycle experiments.

Since the plastic strain energy used up in the process zone around the crack tip is
almost entirely converted into heat (see chapter 1) the crack front can be considered as a
lincar heat source. It is then sufficient to observe the temperature field in the specimen
to determine the work spent around the crack tip. Several methods to do this have been
described in [8].

Tig. 3 shows a typical result. The plastic work spent per cycle and per unit length
of crack front AA,/B is plotted vs. the amplitude of the stress intensity factor AK.
The data points for the two materials investigated lie very well on two straight lines
corresponding to the equation

AAy/B ~ (AK)* (7)
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Figure 4: Crack growth rate during fatigue of St70 [§]

Fig. 4 shows the crack growth rates da/dN for the same experiment. The curves have
the customary shape; especially they show a central portion where their slope is constant
and about equal to 4 (Paris law). Combination with eq.( 7) yields the energy spent to
create a unit of fatigue fracture surface,

Ay dN

V=%

(8)

This has been plotted vs. AKX in fig. 5 [9].

As should be expected U is constant (or nearly so) in the range described by the Paris
law. Such a value is therefore shown for comparison in table L. It should not be concluded,
however, that this is really the work spent in creating the fracture surface.

Eq.( 7) holds even at values of Ak below the threshold value, where the growth rate of
the crack drops to virtually zero. This means that a considerable portion of AAy is spent
on processes which are geometrically reversible and do not lead to damage even though
they do dissipate energy.

(The drop of the curves on the right hand side of fig. 4 is less interesting: it means that
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at high values of stress intensity the fracture mechanism approaches that of unidirectional
fracture.)

4 Reversibility of damage

Fig. 6 shows the growth rate of a fatigue crack as a function of crack length or AK,
respectively. The experiment was performed twice: once in air and once under ultra high
vacuum [10]. The two curves are quite similar (they are supposed to show the transition
from “short crack behaviour” to “long crack behaviour”) but the curve in air is displaced
to higher growth rates by a factor of about 5. This means that there are surface reactions
aflecting crack growth.

Fig. 7 shows schematically how such a surface reaction might work. It shows a crystal
with a slip plane before (a) and after glide (b). Upon reversal of stress the crystal slips
in the opposite direction. This may happen on the same slip plane (c), which makes the
deformation geometrically reversible (although energy is dissipated!). It may also happen
on another slip plane leading to intrusions (d) or extrusions (e). Intrusions and extrusions
of this type have frequently been observed and are known to contribute to fatigue damage.

The decision whether slip is geometrically reversible (c) or not (d and e) may well

depend on the question whether the freshly exposed ledge in (b) is “poisoned” by the
adsorption of atoms from the atmosphere or not.
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Figure 7: Possibilities for reversal of slip upon reversal of load (see text)
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INFLUENCE OF THERMAL EFFECTS ON SHEAR BAND LOCALIZATION IN
ELASTIC-PLASTIC DAMAGED SOLIDS

Erwin Stein, Maria K. Duszek-Perzyna* and Piotr Perzyna*
Institut fiir Baumechanik und Numerische Mechanik
Universitat Hannover, West Germany

Abstract

The main objective of the paper is the investigation of shear band localization conditions for finite
elastic-plastic rate independent deformations of damaged solid body subjected to adiabatic process.
For this kind of the process considered the thermal effects may play a dominating role. The objective
of the paper is to focus attention on temperature dependent plastic behaviour of a body considered.
Thermo-mechanical couplings are investigated and the method is developed which allows to apply the
standard bifurcation procedure in examination of the shear band localization criteria when influence of
thermo-mechanical couplings and thermal softening effects together with hardening and micro-damage

eflects are taken into consideration.

Particular attention is focused on the coupling phenomena generated by the internal heat resulting from
internal dissipation. A set of the coupled evalution equations for the Kirchhoff stress tensor and for
temperature is considered. Assumption that thermo-dynamic process is adiabatic permits to eliminate
the rate of temperature and to obtain the general evolution equation for the Kirchhoff stress tensor.
The fundamental matrix in this evolution equation describes thermo-mechanical couplings. For the
particular elastic properties of the material and for some simplified case of the coupling effects the
criteria for shear band localization have been obtained in exact analytical form.

*

On leave from the Institute of Fundamental Technological Research, Polish Academy of Scierces, War-
saw, Poland

1. Introduction

Recent experimental investigations performed under dynamic loading conditions
(cf. HARTLEY,DUFFY and HAWLEY [1987], MARCHAND and DUFFY [1988],
MARCHAND,CHO and DUFFY [1988]) have shown the importance of thermal effects

in the initiation and formation of shear band localization in different steels.

ANAND and SPITZIG [1980] in the investigation of the initiation of localized
shear bands in quasi-static plane strain conditions for a maraging steel observed that
shear band localization occurs when the hardening modulus rate is decidedly positive,
but small and detected small differences between the values of the hardening modulus
rate for tension and compression. They also showed that the theoretical predictions
from the classical flow theory about the conditions at the initiation of shear bands are
not in accord with experiment.
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The main objective of the paper is the investigation of the influence of thermal
effects on criteria for localization of plastic deformation along shear bands for an elastic-
plastic damaged solid body. It is expected that the experimental results concerning the
shear band localization phenomenon reported by ANAND and SPITZIG [1980] could
be properly explained by considering the influence of two main effects, namely the
micro-damage process and thermo-mechanical couplings.

In chapter 2 a thermo-elastic-plastic model of damaged solids is presented. The
constitutive equations for elastic-plastic solids, when thermal softening, isotropic and
kinematic hardening effects as well as the micro-damage process are taken into consider-
ation, are formulated within a framework of the rate type covariance material structure
with internal state variables. The notions of covariance is understood in the sense
of invariance under arbitrary spatial diffeomorphism (cf. MARSDEN and HUGHES
[1983]). To achieve this aim a multiplicative decomposition of the deformation gradient
is adapted and the Lie derivative is used to define all objective rates for intrduced stress
and strain measures.

To describe elastic-plastic properties of the material a coupled form of the free
energy function is postulated. The isotropic hardening and thermal softening effects
are incorporated in the theory directly by defining the hardening-softening material
function. The kinematic hardening effect and the softening effect generated by the
micro-damage process are described by means of the internal state variable method.
The micro-damage process is understood as the nucleation and growth mechanisms of
microvoids. Basing on thermodynamic restrictions the general rate type constitutive
relation is formulated.

Chapter 3 is devoted to the investigation of thermo-mechanical couplings. The
general heat conduction equation is formulated.

In chapter 4 an adiabatic process is investigated. By neglecting the second order
terms and concentrating only on main contribution to internal heating the evolution
equation for temperature is obtained in a straight-forward form. A set of coupled
evolution equation for the Kirchhoff stress tensor and for temperature is considered.
The elimination of the rate of temperature leads to the fundamental evolution equation
for the Kirchhoff stress tensor. This result allows to use in the examination of the
conditions for localization the standard bifurcation method.

In chapter 5 the criteria for shear band localization are investigated. For particular
elastic properties of the material and for some simplified case of the coupling effects the
criteria for shear bad localization have been obtained in exact analytical form. This
result permits to investigate the influence of main cooperative phenomena on the criteria
for localization.

Discussions of the results is given in chapter 6. Particular attention is focused on
the influence of micro-damage effects and thermo-mechanical couplings.

Chapter 7 brings concluding remarks.
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2. Thermo-elastic-plastic model of damaged solids

Let assume that a body is an open set B C IR® ,and let ¢ : B — S be a C!
configuration of B in S. The tangent of ¢ is denoted F and is called the deformation
gradient of ¢ .

Let {X“} and {z*} denote coordinate systems on B and S, respectively.
In a neighbourhood of X € B we consider the local multiplicative decomposition
F=F¢ -F?, (2.1)
where (F¢)~! is the deformation gradient that releases elastically the stress in the cur-
rent configuration x.

Let define the Eulerian strain tensors as follows

1 —_ e 1 e~
e=3(g-b7), e =3(g-b") , (2.2)

where g denotes the metric tensor in the current configuration,b and b® are the total
and elastic Finger deformation tensors.

By definition
1 -
ef =e—e= -2-(b'a fo b~1) (2.3)
we introduce the plastic Eulerian strain tensor.

The Lie derivative of a spatial tensor field t with respect to the velocity field v is
defined as !

d
vt = ¢ —d*t 2.4
Lot =4, 29 (24)
where ¢* and ¢, denote the pull-back and push-forward operations, respectively.

We have the rates of deformation as follows

d=Lye= -;-ng, dP = LyeP = 11,7, (2.5)

N |

and
d = d° 4 d?. (2.6)

The Lie derivative of the Kirchhoff stress tensor T gives

(L) = (1) = 4. (40"

d - - c
= f¢ AFbB E[(F 1)Ac(F l)BdT d]

1 Tor precise definition of the Lie derivative and its geometrical interpretation please consult
ABRAHAM, MARSDEN and RATIU[1988].Application of the Lie derivative to continuum mechanics
may be found in MARSDEN and HUGIES [1983] (cf. also SIMO [1988]).
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6Tab + aTab ¢ — cb 9}_’1 _ .ac a_vb
ot "Bz " T Bac dze
i.e. the Oldroyd rate (cf. OLDROYD [1950])

To describe inelastic properties of solids it is convenient to introduce a notion of
the intrinsic state

(2.7)

s=(e,F,0;p) (2.8)

which consists of as set of variables (e,F,J; u) given at x at time t, where (e,F,9) de-
termines the actual deformation-temperature (9 denotes absolute temperature) of the
considered particle of a body B, and p represents a set of the internal state variables,
i.e. 4 € V where V denotes the N-dimensional vector space.

It is postulated that there exists the free enérgy function
% = (s). (2.9)

To specify the evolution equation for the internal state vector g we need first its
precise physical interpretation.

Let assume
o= (w,,) (2.10)

where the internal state vectorw € Vi, Kk=N-7 is introduced to describe the dissipation
generated by pure plastic flow phemonena only, « is the residual (or back) stress tensor,
and { denotes the porosity (the volum fraction).

The internal state vector g € Vp is responsible for all dissipation effects which
occur during the thermodynamic process, namely the plastic flow phenomena, the strain
induced anisotropy effect and the micro-damage process which consists of the nucleation
and growth mechanisms.

Let us introduce the yield criterion in the form as follows

99=f(%’g7197€)—"‘"=0 (211)
where 3 _
fO) =+ [m@) + ne(9) €] 77,
j2 = % 7‘:‘,“” ;ICd Jac 9bd, jl = fab Gab T=T-— a, (212)

and & denotes the work-hardening-softening material function.
The flow rule is postulated in the form
d” = AP, (2.13)

where

p = L Ole=const (2.14)
2/, or
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It is assumed that isotropic hardening-softening is described by (cf. NEMES,
EFTIS and RANDLES [1988])

k= R(Ep,é,‘ﬂ) = [k1 + (ro0 — "‘31)6-.,'(1,)61912 1- €F£(19)] 1- bﬁ] ) (2'15)
where ko, %1 and b are constants, h = h(9), ¢F = ¢F(9) and
5 U— 190 P. gP\i

7="3 /( dP : dP)} at. (2.16)

The kinematic hardening is postulated in the form of Zigler’s rule (cf. ZIEGLER
[1959]) ‘
Ly a=at. (2.17)

The micro-damage process consists of the nucleation and growth mechanism of
microcracks, and is described by the evolution equation for the porosity parameter £ as

follows (cf. GURSON [1975])

€ = ky(s)F : AP + ko(s)Jy + ka(s)dP : g, (2.18)

where k1, k2 and k3 denote the material functions. The first term in (2.18) describes
debonding of second-phase particles from the matrix material, the second term is re-
sponsible for the cracking of second-phase particles and the last term describes the
growth process of microcracks.

From the consistency condition

f-fk=0 (2.19)
and the geometrical relation (cf. DUSZEK and PERZYNA [1989a))
(Lya—rdP):Q =0, (2.20)

where r is new material constant and

1 Op O€

2\/']—2 61_ If—const + 05 81‘] (221)
we can determine the coefficients A and a.
This leads to the results as follows
1 . .
= (E{Q tfr=(d®-a+a-d°)) +m9})P,
1 . .
Lyw= Q(s)(—ﬁ{Q ([f—(d* - a+ta-do)+md}),

(2.22)

H**

L,a= T(H{Q [+ —(d* - a + a-d°)] +xd}),

5=(k1*=P+k3P=g)(};{Q=[f—(d"-a+a'de)]+7“9})+kﬁ:g,
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where 1
Py = 5 7 flalgcu gap + A gab
2
1 ~ted
Qub = 2\/}-.7' Jeca gdb +B Gab
2
1
A= \/T(nl + n2€)7%gap
2
k . I )
B=A+_ 2j {naf2 + k1 + (0 — mr)e ™ s
2
H=H* + H** (223)
. 1 = —heP 12 1- b‘l—g g F
" =—-2 J: {naJi + [k1 + (ko — K1)e I'—F HE Ja+ AJ1) + 3Aks]
2
+ h(#1 3—;0) k1 + (k0 — ky)e e ] (1 - E5-1;)(1 -9)(1+ GAZ)%e"‘SP,
V3J2

1 Oy
H*=rP:Q+Q:(P-a+a-P), 7n=—=27.
( ) 27, 09

To take account of loading criterion the bracket () which defines the ramp function has
been introduced. The material function Q(s) remains to be determined (cf. DUSZEK-
PERZYNA, PERZYNA and STEIN [1989]).

Assuming conservation of mass, balance of momentum, moment of momentum,
energy and the entropy production inequality and taking advantage of the postulate
that ko vanishes when J; < le (it means that cracking of second-phase particles takes
place when the treshold value for stress is exceded, ¢f. DUSZEK and PERZYNA [1988])
we obtain the rate type constitutive equation for the Kirchhoff stress tensor 7 in the
form

Lyr=L-d—20 (2.24)

where
1 1 -1 =14 1
L= [I—l- —}-I-ﬁe -PQ - -I-{—E"~PC;!-(£‘3 a+a- [,e)] . [£e —_ I__I—-[Ie -P(Q-T+1‘~Q)],
(2.25)

1 e 1 e _zla —‘1: -1 1— e th
a=[I+5L PQ-4L PQ- (L ata L) - [HLPHL |

and

e __ 82¢ th __ 62’&
L= CRef o7 L= —CRefZoa5
-1 -1
F=r—-Q: (L5 L ata Lo-LN) (2.26)

onres = oM (X)(1 — &o) = em(1 — E)J(X;t) = 2J(X,1)
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if J(X,t) denotes the Jacobian, gp is the mass density of the matrix material, £y the
initial porosit and p the mass density in the current configuration.

3. Thermo-mechanical couplings

Using the energy balance equation and postulating the Fourier constitutive law
for the heat flux we obtain the heat conduction eqution in the form as follows (cf.
PERZYNA [1988])

or
ey PN
- /1 . -1 .
+ 9C1<E{Q [ = (L° Lot~ a+a- £° -Lyr)] + 7} ) (3.1)
+ol[Lor g+ (g F+7-g):d]
where k is the conductivity coeflicient, ¢, = —9 g—:,'zé denotes the specific heat and
%) P\ - -
{( — 05 ) s (-—~0aﬂa§)(klr.P+A3g.P)
H** 6_1/) % . o 2 N .
+5qlow " Yavea) T (B - ﬂaﬂag)k”'g]} ) (3.2)
Y
@ =-(3 -00190§)k2

4. Adiabatic process

Let assume the process considered is adiabatic. This assumption is satisfied for
the initial stage of the plastic flow process when the distribution of plastic deformation
as well as rate of plastic deformation is homogeneous. Thus the term div(k gradd) in
the heat conduction equation (3.1) can be neglected.

For practical application it is resonable to neglect also the second order terms in
the heat conduction equation (3.1). Then we concentrate only on main contribution to
internal heating which is generated by the internal dissipation.

This leads to the evolution equation for temperature in the form
d=M:L,s+N:d (4.1)

where

_G(T:P)Q+(Hg
© Hep—(r(F:P)

(4.2)
GEF:PYQ-T+7-Q)+(H(g-T+7-g)
¢p — (7(F: P) ’

N =
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and
2 %, .
G = —[——di -Q(s) + %(klf:P—{—k;,g:P)
H** . 0, . 1
(-— T — -B—é;kz‘l' : g)] -ﬁ (43)
0
= 8’?
Substituting (4.1) into (2.24) gives
Lor=L-d. (4.4)
where
LM
L=(I—-m)-(£—LN) . (4.5)

It is noteworthy that the evolution equation (4.4) describes for adiabatic process
main thermo-mechanical coupling phenomena.

5. Localization criteria

The fundamental result obtained in the form of the evolution equation (4.4) allows
to use the standard bifurcation method for the investiagtion of criteria for localization
along shear bands in clastic—plastic damaged solids when thermo-mechanical coupling
is taken into consideration.

The theory of the localization of plastic deformation along shear bands was devel-
oped mainly by RICE [1976], RUDNICKI and RICE [1975], NEEDLEMAN and RICE
[1978], RICE and RUDNICKI [1980] and LIPPMANN [1986].

The standard bifurcation method was used by DUSZEK and PERZYNA [1988a,
1988b] to investigate the shear band localization conditions for finite elastic—plastic
rate independent deformations of damaged solids. The investigation of the influence of
thermo-mechanical coupling effects on the localization criteria for Jo—theory of plasticity
was given by DUSZEK and PERZYNA [1989] and for elastic-plastic damaged solids by
DUSZEK - PERZYNA, PERZYNA and STEIN [1989].

Let n be the unit to the surface of a shear band accross which certain components
of the velocity gradient may admit jumps but remain uniform outside and inside the
band.

Let introduce rectangular Cartesian coordinate system {z'} in such a way that n
is in the zo-direction. Any non—uniformities in the velocity gradient are kinematically
restricted to the form

[[ ]]—q(wz)éjz , (5.1)

where [[.]] denotes the jumps of the enclosed quantity across the discontinuity surface
and ¢*(z;) is the magnitude of jump.
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The equilibirium condition requires the continuity of the stress rate across the

discontinuity surface, i.e. )
[#*]}=0 . (5.2)

The conditons (5.1) and (5.2) and the constitutive relation (4.4) give
(L2*2 4 72260% 4 725k gk =0 . (5.3)

_ The onset of localization occurs at the first instant in the deformation history for
which a nontrivial solution of (5.3) exists. Thus, the necessary condition for a localized
shear band to be formed is

det[Lz-""2 + 72289k 4 szﬁzk] =0 . (5.4)
To make possible analytical examination of the influence of thermal effects on

criteria for localization we have to superpose simplifiations as follows:

(i) Let assume in Eq. (4.1) {; = 0, it means that in determination of the rate
of temperature we do not take into consideration the mechanism of cracking of second
phase particles (i.e. postulating k; = 0).

(ii) Similarly as in the infinitesimal theory of elasticity we postulate
a (o] Ci a < 2 Ci
(L)t = Gg°g™ +¢79™) + (K = 3G)g"'* (5.5)

where G and K denote the shear and bulk modulus, respectively.
(iii) Assume that
Lt = og (5.6)
where O is the thermal expansion in elastic range. ‘

(iv) Postulate that the Lie derivative is approximated by the material derivative,
ie.
Lir=7 , Lou~pg . (5.7)

Superposition of the simplifications (i) - (iv) leads to the rate equation

F=1L%.d , (5.8)
where the fundamental matrix L¥ is now as follows
2
L# abed _ G(gacgbd + gadgbc) + (.K _ _3_G)gabgcd (5_9)
1 G ~lab - =\, ab G ~lcd - _cd
TG TORAD —GIT6GHE | T TKA+TGE) I(; 7 TakD )
and _ B } _
o= Cl’ll'(\/ J2+AJ1) = 3@]((1(\/ J2+AJ1) (5 10)

c,G ’ 2¢,G
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denote the thermal plastic softening and thermal expansion coefficient, respectively.

Setting the matrix L# into the Cartesian coordinate system {z'} and substituting
into (5.3) we obtain the necessary condition for localization in the form

(Gl + KAV T + 26EVT) (G +3KBVD) | G oy | oo
H= + = (12 + 723

(Il’ + %G)jz J2

(5.11)
— G -9KAB + GII — 6GBE

Assuming nyr = 0, postulating that the loading process is nearly proportional and
searching for the orientation of the plane within which the shear band localization first
takes place by introducing the condition gr% =0, i.e. requiring H to be maximum with
respect to ny we finally obtain the necessary conditions for localization

__~I
tan2ﬂ=‘s;~_, TIéI ’
4 —
(5.12)
Hc,_ 1+4+v 1—21/:2 14+v 1—21/:2
G~ 2 (T+A+B+ 1+UH) +1‘—V(A B+ 1+uu) +I0,

where § denotes the angle between the vector n and the 7[;; direction, v is Poisson’s
ratio,

S=—(1-v)E+(1+v)A+B 2+Q-20)EJ]; , (5.13)
and
,i',l
T=—L | (5.14)
J2

6. Discussion of the results

By assuming the isothermal approximation of the process considered we can in-
vestigate the influence of micro-damage process on criteria for localization. Then the
necessary conditions for localization along the shear band are as follows (cf. DUSZEK
and PERZYNA [1988])

Hcr 1+

G 2
and the direction of localization is determined by Eq. (5.12); with

i *24- By (6.1)

(T+ A+ B+

S=—-1+v)f+1+v)(A+ B)\/JTI, (6.2)

The result (6.1) for the critical hardening modulus rate %’- as function of the
state of stress T may be represented by the parabola II, as it has been plotted in Fig
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1 by dash-dotted line. This parabole when compared with the parabola I given by the
equation (for micro-damage process negligible, A = B = 0)

Hey 14w

G = 3 T (6.3)
and plotted in Fig. 1 by broken line, is translated up by %—'_%(A — B)? and is shifted left
by A+ B.

The translation up is caused by the mechanism of nucleation due to cracking of
second phase particles (k; # 0, then A # B) and shifting left is implied by the micro-
damage process (by the nucleation as well as by growth mechanisms).

The translation up means that the material is more inclined to instability by local-
ization along the shear band and the shifting left shows that the inclination to instability
for the axially symmetric compression is different from that for the axially symmetric
tension. For tension material is more sensitive to localization than for compression.
Both these effects have been observed experimentally by ANAND and SPITZIG [1980].

To investigate the influence of thermo—mechanical couplings only on criteria for
localization let postulate that there is no micro-damage effects (A = B = 0) for adia-
batic process. Then the necessary conditions for localization along shear bands are as
follows 2

- —9,)2
H., =—-1+V(T+ 1 21/,:)2 1-2v)%_,
—v

e 5 T 40O, (6.4)

and the direction of localization is again given by Eq: (5.12); with

S=-1-v)f+@1- 21/)5\/}2 . (6.5)

The result (6.4) is plotted in Fig. 1 as the parabola III by dotted line. This
2
parabola, when compared with the parabola I, is translated up by (=20)"=2 | MT.and

1-p?
is shifted left by 11;2""5.

The translation up is caused by both thermal effects, i.e. by thermal expansion
(represented by E) and thermal plastic softening (represented by II), while the shifting
left is implied by thermal expansion only.

As it has been already pointed out by DUSZEK and PERZYNA [1989] the experi-
mental results concerning the shear band localization phenomenon reported by ANAND
and SPITZIG [1980] can be properly explained by considering the influence of thermo-
mechanical couplings only. Indeed, considering the influence of thermal expansion and
thermal plastic softening we can have shear band localization when the hardening mod-
ulus rate is positive and we have also differences between the values of the hardening
modulus rate for axially symmetric compression and tension.

The results obtained in chapter 5 took into consideration micro-damage process
and thermo-mechanical couplings simultaneously. Equation (5.12), for the critical hard-

ening modulus rate —%:f- as function of the state of stress T' can be represented by the

2 These conditions have been first obtained by DUSZEK and PERZYNA [1989].
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parabola, cf. the parabola IV plotted in Fig. 1 by solid line. ThlS parabola, when
compared with parabola I, is translated up by (A B+ 3 1= 2"”) +II and is shifted

left by A+ B + =211

For this general case in explanation of the results for the initiation of localized
shear band reported by ANAND and SPITZIG [1980] can participate the influence of
both effects, namely micro-damage process and thermo-mechanical couplings.

Numerical estimation of the effects which influence criteria for shear band lo-
calization has been given by DUSZEK - PERZYNA, PERZYNA and STEIN [1989].
Particular attention has been focused on the comparison of micro-damage and thermo-
mechanical coupling effects. In the estimation procedure it has been assumed that
A = B, hence Eq. (5.12); takes the form

He 1+u 22 (1-2v_,
= = (T+2A+ > B + Tz +0 . (6.6)

The estimation results are as follows

(i) The micro-damage term 24 (cf. Eq. (6.6)) is of the same order as the

1-2ve
thermal expansion term J73-E.

(ii)) The dominated role plays the thermal plastic softening term II, which at
initation of localization is 2.5 times higher than the thermal expansion term QI—%'%L"Z

7. Concluding remarks

The investigation of shear band localization conditions for finite elastic-plastic
deformations of a damaged solid body subjected to adiabatic thermo-mechanical process
has been inspired by the recent experimental results presented by ANAND and SPITZIG
[1980], HARTLEY, DUFFY and HAWLEY [1987], MARCHAND and DUFEY [1988]
and MARCHAND, CHO and DUFFY [1988].

These experimental results allow us to draw the conclusions as follows:

(i) The predictions from the classical plastic flow theory about the conditions at
the initiation of shear band localization are not in accord with experiment.

.(ii) In the proper explanation of conditions of shear band localization the dom-
inated role play two effects namely the micro-damage process (softening effects) and
thermo-mechanical couplings (thermal expansion and thermal plastic softening, both
generated by internal heating effect).

The theoretical results obtained in this paper concerning the influence of micro-
damage and thermo-mechanical coupling effects on shear band localization criteria are
generally in good agreement with experimental observations.

Particularly, it has been proved that by taking into consideration the micro-damage
effects the material is more inclined to instability by localization along the shear band.
The localization can occur even for positive value of the rate hardening modulus. It has
been also shown that the inclination to instability for the axially symmetric compression
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is different from that for the axially symmetric tension. For tension material is more
sensitive to localization than for compression.

Similarly it has been proved that the experimental results can be properly ex-
plained when the influence of thermo-mechanical couplings only is considered. In fact,
by taking into consideration the influence of thermal expansion and thermal plastic soft-
ening (generated by thermo-mechanical couplings) we can have shear band localization
when the hardening modulus rate is positive. On the other hand we have also differ-
ent results for axially symmetric compression when compared with axially symmetric
tension.

The most realistic results have been obtained by taking into consideration the
influence of combined micro-damage and thermo-mechanical coupling effects on shear
band localization conditions.

Numerical estimation of the effects considered has showed that:
(i) The micro-damage effect is of the same order as the thermal expansion effect.

(ii) The dominated role plays the thermal plastic softening effect, which at initiation of
the shear band localization can be 2.5 times higher than the termal expansion effect.

Further numerical estimations and investigations are needed to show quantitative
comparison of the influence of micro-damage and thermo-mechanical coupling effects
for different state of stress.

The analysis of shear band development in nonhomogeneously deforming solids
requires a full initial-boundary value problem solution. Such solution can be obtained
only by means of numerical methods.

In recent years the quasi-static as well as dynamic initial-boundary value problems
with devclopment of shear bands have been solved by using finite element method,
e.5. LE MONDS and NEEDLEMAN [1986], TVERGAARD [1987], NEEDLEMAN
[1988,1989] and BATRA and LIU [1989].

Unfortunately the numerical solutions are obtained by superposing some artificial
inhomogenities.

To remove this inconvenience one has to develop a method which allows for using
in the numerical algorithms the analytical criteria for localization along the shear band.
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SPECIALIZATION OF THE THERMODYNAMIC ENERGY BALANCE EQUATIONS
TO FRACTURE PROCESSES IN THERMOELASTOPLASTIC MATERIALS ‘
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ABSTRACT

Fracture processes are in a special way a consequent effect of the energy distri-
bution around the crack tip. In this respect the strain energy density plays an important
role in a cracked thermoelastoplastic solid. In order to formulate a crack driving force
the energy balance of the cracked body is used which has to be put in an appropriate
form. The latter can be reached by means of the thermodynamic functions like the
internal energy as well as the dissipative work. Thereby an extended expression for the
dissipative work including irreversible mechanisms at the microscale has been used for
the establishment of a fracture criterion for thermal cracking of nonhomogeneous
materials. In addition the criterion created delivers informations concerning the
prospective crack path of a propagating crack. The theoretical results are illustrated by

numerical examples.
1. INTRODUCTION

Manifold fundamental research has been performed including the dissipative effects
into the thermodynamic frame. In this context it is worthwhile to study the papers of
Lehmann /1/, Maller /2/ and Mazilu /3/ who have done much helpful work in  this
field. Bui /4/, Gurtin /5/ and Mc Cartney /6/ investigated important problems in
fracture mechanics. The aim of this paper is to specialize the basic thermodynamic laws
to fracture processes in thermoelastoplastic materials, The theory presented here is

based on the research report /7/.

Especially in a thermoelastoplastic solid the crack growth is accompanied by plastic
deformations which cause dissipative processes. In addition the crack growth can be
determined by means of a vectorial fracture criterion which takes into account the
dissipative energy. Starting with the general energy balance equation it is possible to
formulate and separate the different quantities like the stored energy, the energy flux,
the internal energy, etc.. By means of the basic laws of continuum mechanics the

special thermodynamic functions willl'be derived. These functions can be used for the
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formulation of a global J-integral criterion which is comparable in its special form with
the well known J-integral introduced by Rice /8/ and Cherepanov /9/. Further, it is
recommendable to study the papers published by Buggisch /10/, De Lorenzi /11/ and
Knowles /12/ who did research in the field of the basic theory of the J-integral. In
recent years many papers dealing with dissipative fracture processes were published.
Besides, the ductile tearing instability /13/ and the J-integral in anisotropic media /14/
have been taken into account, which are important for a fracture assessment in more

realistic material models.
2. ENERGY BALANCE FOR FRACTURE PROCESSES

Fracture processes in thermoelastoplastic materials are determined by the dissipated
energy and the energy stored in the structure in a special manner. Describing the
fracture process by a thermodynamically based theory it is necessary to start with the

general energy balance which in its local form reads

po¢ = ‘DJ 2 + K (1)
with the stored energy ¢ , the energy flux wj j and the energy production of internal
sources k . In eq. (1) the dot means the differentiation with respect to time. For
quasistatic processes we can assume that K equals zero. The stored energy can be

subdivided as follows
b=€+w. +w +w (2)

with the internal energy € , the energy stored in the structure We
the surface energy Wo and the energy wp stored in the structure of the

fracture zone. Similarly we receive the formula for the energy flux vector q)j
(3)

with the stress tensor ¥ , the displacement vector u; and the heat flux vector qj.

i
It should be mentioned thgt in eq. (2) the kinetic energy is not taken into account. This
can be done easily if necessary. For a further specialization we assume that the
internal energy € is a unique function of the elastic strain tensor e and the absolute
temperature T. The same assumption may hold for the free energy f and the entropy s

in a thermoelastoplastic material. The free energy can be subdivided as follows
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f=f, +Fy(T) ' “

with the potential strain energy density f el and the function fl (T) which will be

determined later on.

By introducing the local heat balance the following relation can be derived

¢ =L -1
€0, it "o, Yttty (%)

An explicit representation of the thermodynamic functions €, f and s can be given by

using Gibb's equation

21 1
ds—T(dE-‘—);-_qd), (6)
the thermodynamic relation

f=€-Ts, M

as well as Hooke's law for thermoelastic materials. After some mathematical operations
and by assuming that the potential strain energy f el equals zero during an unrestricted
thermal expansion, the functions may be’determined by means of the following relations.
Thus, by using the approach to the internal energy

e = < ®

together with the relation
—_—= = =S (9)

and the requirement for the internal energy

E(O,To) = coTo (10)

an explicit representation of the functions € , f and s can be obtained

€= wet koToe + coT
f=w—kee—cT5Ln—I—

e~ %o o T, (11)
s=ke+c (1+3Lnl)

0 0 T

(]
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with the reference temperature TO, the coefficient of linear thermal expansion o and

the relations 1 Eo

9=T"T0 H ko——p-o-m H e=epp
_ _E 1 (12)

Me = Zoo(Try (i385 YT &

It can be shown that the functions (11) fulfill the second law of thermodynamics.

Further, it is interesting to consider the specific heat at constant strain and stress,

respectively. Namely, from eq. (11) and the corresponding definition (13)

3s

- T39S . -
Cg—TaTg > Cg---TgT‘g (13)
one obtains
cg = ¢, (14)
and
= 15
(:g S, + 3k0 al , (15)
respectively.

For further considerations it is necessary to determine the potential part fgog of
the free energy. By means of the requirement that the potential strain energy equals
zero during a free thermal expansion f,, reads as follows

foo=w_ -keo+ok a6’ (16)
et e 0 2"

By considering eq. (5) and by combining the irreversible parts outside of the fracture

zone
. = . . 17
W= Wy W (17)
as well as the corresponding quantities for the specific fracture energy

=W F W, bW (18)

. 1 . .
=0, %%y T, Y. Mt Y (19)
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Then, by using the relation for the energy flux (3) from the general energy balance one
obtains the following two relations

. . 1 . . .
Wy - ke - 5-5 (Gij“i),j = =W - W
(20)

. o . 1 . e
fez + k,eo 3koaee - 5; (°ij"1‘),j = -Wp - Wp

3. FORMULATION OF A FRACTURE CRITERION

Now, by changing the differentiation with respect to time to the increment of the

increasing crack surface it follows
dAR =2bda (21)

with the width b and the length a of the crack. By introducing a special coordinate

system according to (see Fig. 1)

X5 = )‘21. - cosay adt 3 (i=1,2,3) (22)

the following relation can be derived after some mathematical operations

—

3 2 =
{f + koed, - koo )’j} cosa, = Wp o+ W o (23)

eL,p

P P og Cidi.p

381
3Bo
/ B
Fig. 1: Reference coordinate Fig. 2: Crack tip zone and
system Xxj and moving system x; J-contour integral,

fixed at the moving crack tip. IB* = 3B; + 3B
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Now the relation (23) has been integrated over the volume B and B o respectively,
where the corresponding geometry is shown in Fig. 2.

Finally, by using the Green-Gauss theorem the specialized energy balance equation (1)

reads

L = - =
p COS ) Jp cos ap épowl ’adV 2by (24)

with the definition

- .3 2
Iy = L (ool ey - 7 kgao?15;, -

c'ijui,p}dAj + épokoee,pdv (25)

By means of the relation (24) a crack growth criterion can be formulated as follows

2
chos oa 2 2by (26)

A comparison with the well-known energy release rate leads to the relation

_ 1
G = 75 Lp cos o, (27)
Further in case of an unstable érack growth the following inequality holds true
dG dy
EIT\E > an (28)

Moreover, if the specific fracture energy is independent of the crack length, then it

follows from eq. (28)

L
(Lycos o )'AR >0 (29)
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4. NUMERICAL EVALUATION OF THE GENERALIZED ]J-INTEGRAL

In order to study the characteristic behavior of the above mentioned generalized ]-
integral in elastoplastic materials several FEM-calculations have been performed. Firstly,
a crack in a rectangular plate has been investigated (see Fig. 3) by evaluating the J-
integral for elastic and elastoplastic material laws, respectively, as well as for
displacement and thermal loads. In Fig. 4 two J-curves for elastic and elastoplastic
materials, respectively, are shown. It is obvious that the J-values for an elastoplastic
material law are higher than for an elastic material law. The difference increases with
increasing loads. It must be mentioned here that the J-values were calculated
correspondingly to the definition (25). Thereby some authors name Jp the elastic part of
the J-integral. In Fig. 5 several J-load-curves corresponding to the specimen shown in
Fig. 3 are given where the crack length "a" acts as a parameter. These curves are
starting if plastic deformation occurs at the crack tip for the first time. By plotting
the J-values versus the crack length a (see Fig. 6) the following conclusions can be
stated. For each special load-structure combination there exists a critical crack length

which is independent of the applied load.

u
[ | Fig. 3: Edge crack in a rectangular plate
—— 2 H =  40.00 mm
-
| I B = 15.00 mm
L4 | a = 500 mm
—-}—1 [ = .01
a | i ‘ H L 0 mm )
r | E = 70.00 kN/mm
: 2
| i = 60.00 N/m
- B /mm
= 0.33

c

Further calculations have disclosed the interesting phenomenon that the first critical
J-value which describes the first occurrence of a plastic deformation is independent of
the crack geometry. Because the ]J-criterion is a vectorial one it is worthwile to verify
its applicability by further investigations. Therefore experiments with thermally stressed
disklike glass specimens were performed. By using the generalized J-integral (25) a
prediction of the prospective crack paths in such glassy compounds was undertaken.
Extensive investigations about crack path prediction in two-phase materials have been
carried out by Herrmann /15/. Two examples will presented here. The first one is a
curved crack path in a disklike specimen consisting of two different optical glasses with
a central hole loaded by a homogeneous temperature load. By applying the scalar J-
value of the vector-valued J-integral JP the predicted curved crack path shows a
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reasonable agreement with the results obtained by the GH = 0 crack growth criterion as

well as by the experiments, respectively.

The second example is represented by a straight interface crack in a glassy two-

phase compound. In this case the calculated J-values show a very good agreement with

the numerically obtained values of the total energy release rate G at the crack tip

which is under mixed-mode loading.
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Fig. 4: ]-Integral values in dependence on loading steps
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Fig. 6: J-Integral in dependence on crack-length a and with the loading as parameter

CONCLUSION

It has been shown that the formulated generalized J-integral is applicable for a
crack path prediction in self-stressed nonhomogeneous solids. Further, the developed
theory delivers a crack assessment which takes into account the effect of plastic
deformations under thermal as well as mechanical loads. Moreover, the created method
allows the calculation of critical crack lengths associated with the specimens chosen.
Finally, the energetic basis of the theory is proper for combining the fracture
mechanical treatment of a cracked solid with the microstructure where the -damage

theory could play a crucial role.
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STRESS SINGULARITIES AND DISCONTINUITIES ON THE FREE
SURFACE OF A THERMO-ELASTOPLASTIC BIMATERIAL BODY

H.D. Bui! and S. Taheri
Electricité de France, Dept. MMN, 92141 Clamart, France
(1) and Ecole Polytechnique, 91128 Palaiseau, France

Abstract.- Fracture mechanisms at the free surface of heterogeneous materials, poly-
cristals, composites etc.., are investigated by consideration of a model of a bimaterial
interface intersecting a free surface. The high stress level near the crossing point
between the interface and the free surface can be related to discontinuous material
properties : elastic moduli, thermal expansion coefficients, plastic behaviors.
Analyses of interfaces between two elastic media, which results in logarithmic stress
singularities, are widely reported in the literature. This paper is focused on thermal
and plastic effects at interfaces. We find that the stress component parallel to the
free surface is discontinuous at the crossing point, resulting in a very localized high
stress, which we call the "Thorn Singularity". The characteristics of the Thorn singu-
larity are : boundedness of the stress, discontinuity on the free surface, singular
gradient of stress. The jump relations between this stress component and the discon-
tinuities of thermal strain and plastic strain are established. Analytical solutions and
numerical ones confirm the analyses and show that the stress field can be splitted into
a strong local discontinuous field and a global smooth stress field which can be mod-

ellized by a classical shell theory.

Introduction

The initiation of cracks is generally observed at the free surface of loaded structures.
The microcracks are initiated on defects such as geometrical discontinuities, existing
cracks, heterogeneities, inclusions or interfaces of two materials. The interface
between dissimilar elastic materials has been widely analysed in the literature, [1] to
[5]. There are other interface problems concerning with thermal and plastic
behaviors. In this paper, we investigate the stress singularity near the crossing point
A, Figure 2a, between the free surface (x,=0) and a surface of discontinuity (x,=0) of
thermal strain [aT]#0 or plastic strain [¢P ]#0, by assuming continuous elastic

behaviors. This situation typically corresponds to welding of steel : the basic metal
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and the weld are generally designed so that they have the same elastic constants, but
due to heat and phase transformations the mechanical properties of the weld zone are
at lower strength than that of the basic metal, pafticularly for the yield stress and the
hardening coefficient. Very often, the interface between the metal and the weld is
the location of crack initiations and growths, Figure 1.

In this paper, we shall examine the stress singularities arising at the interface point A
at the free surface. We will find a new type of singularities, weaker than classical
unbounded ones. Instead of the logarithmic singularities or negative power behaviors,
etc.. we show in this paper that the principal stress parallel to the free surface is
continuous inside the body, but discontinuous on the free surface and its gradient is
unbounded.

Tube under a thermal shock

In order to study analytically the stress field near the interface z=0 of a discontinu-
ous thermal strain [eT]an, we consider a long circular tube (coordinates r, z). The dis-
continuity of €¢I may be caused by either the discontinuity of thermal coefficient
[@]#0 or the discontinuity of the temperature [T]#0 or both [@T]#0. Without loss of
generality, we consider for example the second case, and we assume that the tempera-

ture is prescribed as follows :

z
(1) T(z) = AL Jexp(-uz/zw)du
nvam

where AT is the jump T(+00)-T(-o00).

The thermal shock experiment corresponds to the limiting value n—0. Internal and
external pressures can be applied to the tube by prescribing pj(z) at r=rj and pg(z) at
r=ro . The solution to this thermomechanical problem can be derived in a classical

manner, by means of the Love displacement function ®(r,z)

2p up(r,z) = - (82/3r3z)@(r,z)
(2) 2p ugy(r,z) = 2(1-v)A; ®(r,z)
Ay =3%2/8z2% + 32/3r% + 3/rdr

The stress components are expressed as follows :

(3) opp(r,z) = (8/3z)(vA;-82/8r2)® -EaT(z)(1-2v)
agg(r,z) = (8/9z)(vA,-8/rdr)® -EaT(z)(1-2v)
044(r,2) = (8/32)((2-v)A[-8%/322)® - EaT(z)(1-2v)
or2(r,z) = (8/3r)((1-v)A, -02/322)%
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The Love function satisfies the equilibrium equation (E : Young modulus, v : Poisson
coefficient)

(4) ApAp(r,z) = EeT (z)/(1-v)(1-2v)

The choice of the particular temperature field (1) is very convenient for the method
of solution by Fourier transform T(z) — T*(s)

T*(s) = iAT/sV2w exp(-s?n?/2)
In the case of thermal shock (n=0), the analytical solution derived in [6] for the case
Pe=pj=0 shows that (x,=z, x,=r) at x,=rg (or x,=rj) the Fourier transform of the
axial principal stress ‘7‘11 admits asymptotically, for the first term of its Laurent
series, the expression

* Eof[T] _i
o 11(S,X2=l‘e) o~ T—LI;J- ’2";‘"‘5‘1'

This relation in Fourier transform shows that the physical stress o,,(x,,x,=rg) is dis-
continuous at x,=0, x,=re , e.g. at the interface point A of the free surface; the dis-
continuity relation for the general case [@T]#0 at the point A is given by

(5) [01,] = 12 [aT]

The Thorn singularity

In Figure 4. we show the analytical solution o,,(x,,r¢) on the external radius, for
x,20 (o,, is antisymmetrical with respect to x,=0) compared to the numerical solution
by the finite elements method with n=0.1 , with normalized thickness h/rm=0:l (rm :
mean radius). For x,27/2 we recognize the single wave form of the shell solution;
near the point x,=0 we observe a very localized and discontinuous stress field
-0,,(x,=-0,rg) = 0,,(x,=+0,rg) = E[aT]/2(1-v) , see [6]; the characteristic length of
the Love-Kirchhoff shell solution is 4= [hr,. Along the interface x,=0, due to anti-
symmetry reason, the stress o,, inside the tube vanishes identically o,,(0,x,<0)=0.
Fig.3 shows the 3D representation of the field o¢,,(x,,x,) inside the tube which
indicates the presence of a very localized zone of high stress, which we call sugges-
tively the Thorn Singularity. We will show below that this singularity is characterized
by :

-boundedness of the stress

~discontinuity at the free surface point A

~-continuity inside the domain

-unbounded gradient.
It is worth noticing that a finite element calculation with a coarse mesh, without the
knowledgerof sthes Thornsingularity;swould miss totally the local effect. The presence
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of localized high stress near the interface and the free surface point is a general
feature in thermal shock loading, even for arbitrary of geometry of structures, and
also in the case of plastic shock as shown in the next section.

Plastic shock

We study the residual stress field in a composite solid, consisting of two materials
whose mechanical properties are only different by their plastic behavior. We wish to
study the asymptotic behavior of the solution near the point A of the interface inter-
secting normally the free surface.

We consider first the following problem : Assume that the plastic strain P is
piecewise constant in each material domain, or more simply ep='1H(x1) , where H is
the step Heaviside function, H=0 for x,(0, H=1 for x,)0. The domain QI in considera-
tion is the 3D rectangular bar, Figure 2a. We wish to analyse the residual stress o,, at
X,=X,=Xx,=0. Without loss of generality, we assume that ¥=(7;;,715,752,733) i5 2
constant tensor and 17;;=0.

The equations are :

o = Le(u) - 2peP in Q
(6) diveo=0 in Q

o.n=0 on 80
Let s=Le(u), v=71+92, 71=(0,7,,,0,0), 72=(7,,,0,7,;.733)-
We search a solution ul, for ¢P =71H(x,), such that:
7) Le(ul) = 2py*H(x,) or 0=0.
Since the right hand side of (7) is a piecewise constant function of x,, e(ul) is a
piecewise constant shear strain, thus the above equation is integrable. This means
that the plastic deformation 4,H(x,) is compatible , in the sense of Kroner. In other
words, no residual stress arises from the compatible plastic strain 1.
However, there is a residual stress arising from the incompatibility of the plastic
strain 2. This can be seen by the following physical arguments. Let the solid be
separated into two parts along the interface x,=0. This operation releases the residual
stress and changes the areas of the common interface in different manner, the right
bar undergoing the homogeneous deformation 7,,, 7,,, 735, Figure 2b. In order to fit
together the faces x,=0 of separate bars, apply the fictitiuous traction T,=32pq,, on
the faces n,=+1 of the right half bar , and the fictitious traction T ;=32p7,, on the
faces n,=t1 of the same bar (no traction on the faces n;=tl). The right half bar is
thus subjected to the deformation (-7,,, -7,,, ~733) Which makes the surfaces at x,=0
superposable; at this stage, the stress o,, is equal to zero. Then after sticking the
faces at the interface, we unload these fictitious tractions by applying now the

reverse tractions to the reconstituted bar. Precisely during the last operation, the
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applied traction T,=2uv,,H(x,) on the face n,=1 induces a discontinuous Neumann boundary
condition , hence discontinuous stress components o,,, o0,, at the interface point
A(x,=x,=x,=0). The discontinuous stress T, applied at far distance from the point A does
not induce any discontinuity at A. Finally, because of the discontinuous applied normal
traction o,, at A, from the classical theory of elasticity, we obtain the discontinuity relation
for the component o,, at the boundary

®) [0,,(A)] = 24[eP, ]

The above relation between the discontinuities of stress o, and plastic strain ¢P,, has been
derived in the simple example of rectangular bar with a piecewise constant plastic deforma-
tion. As a matter of fact, this relation is valid for the general case where the plastic strain
is discontinuous at the point A, but not necessary a piecewise constant field. In this case,
the plastic strain ¢P(x) can always be decomposed into ¢P=el+e2, with el a piecewise
constant field and e2 a continuous field throughout the solid. The component e2 does not
produce any discontinuity of the stress. The component el leads to the discontinuity relation
(8) whose validity is thus proved for the general case. This argument is also valid for
complex geometry if we make use of asymptotic arguments and assume that the interface is

normal to the free surface at the point A.

Numerical calculations

Figure 5 shows the 2D finite element solution for a bimetallic beam, with the same elastic
properties but with different plastic characteristics. The plastic deformation €P,, versus x,
curve has been shifted vertically to show that the discontinuity relation (8) is satisfied with
precision.

We find also that the residual stress o,,(x,,x,) in the beam presents the same thorn singular-

ity as shown in Figure 3.

Expression of the thorn singularity

In the vicinity of the point x,=x,=x,=0 , the residual stress may be asymptotically obtained
by considering a semi-infinite body. A classical example of a Neumann discontinuous
boundary condition on the frontier of the domain x,<0 is the problem of Boussinesq-
Flammant with a constant pressure on 0<x;<a ,xz'=0. This solution gives us the stress field at
x,=0

9) 0,,= - T/2 - arctg(x,/x,) - X,X,/(x} + x3) + ...

The constant term 7/2 has been added to obtain two opposite thorns as shown on Figure 3.
In real structures, unsymmetrical solutions may exist and the singularities may have
different strengthes. The thorn singularity (9), as indicated before, is bounded at x,=x,=0,

discontinuous on the surface, and its gradient is unbounded.
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Discussions

Let us give some interesting values for steel. For a discontinuous temperature of 100
°C with a= 1.2 10'5, E=200000 MPa, v=0.3, the discontinuity of thermal stress is
[0]1=340 MPa . For a discontinuity of a equal to 10-6 (the interface weld-metal case)
and a service temperature of 550 C°, the discontinuity of o¢,, is 160 MPa . For a
plastic deformation discontinuity of order .001, the stress discontinuity is about 150
MPa . These values show how important is the localized stress at interface, which we
call the thorn singularity. Relations (5) and (8) give us the explanation of some
phenomena such as the formation of surfaces microcracks in thermal stripping, as
observed particularily in cyclic loading, or the initiation of crack at the weld region ,
Figure 2.

Decomposition of three-dimensional solution in local and global effects

In the previous sections we noticed that the discontinuity of o,, due to a thermal
shock is the same in both plane strain and axisymmetric cases. Moreover, it is easy to
show that the values of stresses at x,=+0 on the external and internal skins for plane
strain is the same as in axisymmetrical case, equal to E[aT]/2(1-v). This is a quite
general result : In fact it can be shown [7] that, for a thin tube (rp /h>15) under a
thermomechanical axial loading, in the case of small perturbation, the 3D solution
can be decomposed into a local and a globaf effect. The local effect is independent of
the mean radius and may be approximated by a plane strain solution, while the global
one may be approximated by a classical Love-Kirchhoff (LK) linear theory. To show
this , a decomposition of functions into odd and even functions of the through
thickness variable x,=r-rg, is used through equations (2), (3), (4). The local effect
has an extension of an order of the thickness , and is extremely sensitive to the deri-

vative of the temperature profile T"(z).

Figure 6 shows the axial stress on the external skin, for two temperatures fields,
which are globally identical but differ only in a small region just by their deriva-
tives. The comparison has been made between three dimensional solutions 3D1, 3D2
and shell solutions LK1, LK2.

For the case of a pure thermal loading, using the above analysis, a shear effect shell
approximation can be made and has been given in [7]. The maximum error in compar-
ison with the 3D solution may reach 70% in the case of a thermal shock. This clearly
shows the inability of the shell theory to analyse local effects due to discontinuities.

The above mentioned analysis has been extended to the case of thick tube, with the
ratio rp, /h>4 and also to the case of other structures such as rings and spheres. Using
the notion of local effect, it is qualitatively shown that, generally, a classical linear



42

theory is not valid at a clamped edge, because of the existence of a local effect.
Figure 7 shows the independence of the local efect with respect to the curvature, in
case of a thermal shock. Numerical results reported in Figure 8 shows the decomposi-
tion into local and global effect and the parity observed in these effects for a bima-
terial tube under traction. Figure 9 shows comparison between solutions for a bima-
terial : 1) a 2D plane strain solution, 2) an axisymmetric solution for a tube, 3) a
Love-Kirchhoff solution for the tube. The same local effect is found in solutions 1)
and 2). Outside the region of local effect, the same global behavior is observed in
solutions 2) and 3).
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Figure | : Crack initiation at the weld/metal interface.
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Abstract

Recent progress in understanding stress-driven solute segregation
during intergranular fracture is reviewed. Theoretical predictions and
model assumptions are related to experimental observations of cracking

of ferritic steels and discussed in the light of available evidence.

Introduction

It is now widely appreciated that stress-driven solute segregation
near crack-tips plays a key role for the mechanical behaviour of
materials where performance depends on bulk transport of embrittling
agents to fracture zones. Originally suggested and demonstrated with
the example of hydrogen in cracked specimens of iron under stress
[1,2], this mechanism has received significant attention following the
discovery of slow, high-temperature brittle intergranular fracture of
low-alloy steels; a novel type of failure which requires local
enrichment of impurities such as sulphur in the region of intensified
stress around crack-tips [3,4].

The concept underlying such segregation and concomitant grain-
boundary fracture events proceeds from the stress field of a loaded
crack interacting with nearby point-defects. At temperatures ensuring
sufficient mobility, this interaction can impose a drift flow upon the
point-defects that determines their migration in the vicinity of the
tip. Thus, enhanced segregation to the crack as well as to the grain-
boundary ahead of the crack may occur. When the defects are an
embrittling solute its accumulation can, in turn, promote fracture by
reducing grain~boundary cohesion and encouraging crack propagation

under the prevailing conditions of stress intensity and temperature.
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In this paper I take the opportunity to highlight briefly some of
the recent progress in modelling and application that has been
achieved, with emphasis on work at Harwell. The segregation process
triggering intergranular fracture, as previously invoked and quantified
by us [4,5], will be outlined for both undersized and oversized solute.
Theoretical predictions and inherent assumptions will be related to
experimental observations of cracking of ferritic steels and discussed
in the light of available evidence.

Model

Consider a long, straight, semi-infinite crack within an isotropic
elastic body and a coplanar, unbroken grain-boundary ahead of the
crack. Under mixed-mode 1loading by an applied uniaxial tension,
intrinsic to the meandering process of intergranular fracture
addressed, the crack-tip exerts a stress field characterized by the
stress-intensity factor K. When the axis of applied tension is
orthogonal to the crack-tip and inclined at an angle o to the grain-
boundary half-plane (where 0 < a < m/2, without loss of generality),
the energy of interaction between this stress field and a point-defect,
represented by a misfitting spherical inclusion located at distance r
from the tip and azimuth 6 to the boﬁndary, has the harmonic form [5]

Ea = Asina sin(B/Z-a)/rl/z; -mn < 0 < mw, (1)

in which A = (2/97)1/2(1+v)KavV, (2)
where v denotes Poisson's ratio of the elastic body and AV the
relaxation volume of the point-defect.

To analyse the kinetics of segregation, we envisage transient
depletion of solute from an initial uniform solute atom concentration.
Assuming solute flow near the crack-tip arises predominantly from the
crack-tip stresses and random diffusion may be ignored, the solute
current density, in the 'pure-drift' approximation, is given by the

Einstein equation [6,7]

ia = - (D/kBT)cuZEu (3)
with the solute diffusion coefficient D, Boltzmann's constant kB and
absolute temperature T; the volume concentration of solute c, itself is

determined by the continuity equation

3c /3t + V.j =0 (4)
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recalling expression (3), together with the condition €y = o at
initial time t = 0, introducing a positive constant Cor and the
requirement Gy T Co 88 T > = at any time t > 0.

The appropriate solution for the transient solute atom concentration
c. around the crack-tip (implyiﬁg that both the crack and the
associated grain-boundary act as ideal point-defect sinks) consists of
two regions separated by a characteristic which rigidly expands with
time; in the inner region the concentration is identically zero and in
the outer region it retains its initial wvalue c,- Fig. 1 illustrates
this solution at a particular time t > 0 for « = m/3 and relaxation
volumes of either sign; the figure also shows equipotentials derived
from egn. (1) and flow lines given by orthogonal trdjectories to the
equipotentials along which solutes drift in the arrowed directions,
thereby depleting the region inside the characteristic. Evidently,
when AV < 0 the solute atoms enter across the crack-surfaces and along
the grain-boundary from below, whereas when AV > O they enter along the
grain-boundary from above and into the crack-tip [5,7].

The numbers of solute atoms lost at the various sinks after time
t > 0, per unit length of the crack-tip in excess of the numbers
deposited at time t = 0, equal the numbers of such point-defects
initially present within the ‘respective sections enclosed by the
expanding characteristic. Thus, Nzc(t), the number of solute atoms
segregated to the upper crack-surface (when AV < 0) or Ngb(t), the
quantity lost at the grain-boundary from above (when AV > 0), in time
t >0, is [5]

NS NG (0) = 3£ (sina) S o) (207, (5)
where f(a) = 3w + 8sin(2a). (6)

Similarly, Nic(t), the number of solute atoms segregated to the lower
crack-surface (when AV < 0) or Nzt(t), the quantity lost at the crack-
tip from behind (when AV > 0), in time t > 0, is [5]

ADE 4/5

N2 (e) NS (e) = 2(Fa(a) Y (sine)¥/® s (7)

where g(e) = 6o - 5sin(2a) + Zsin(Zu)cosza. (8)

Likewise, Ngb(t), the number of solute atoms segregated to the grain-
boundary from below (when AV < 0) or Nzt(t), the quantity lost at the
crack-tip from the front (when AV > 0), in time t > 0, is [5]
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(a)

(b)

Fig. 1. Equipotentials (----), flow lines (—»), and expanding
characteristic (— ——) in the vicinity of the crack (straight double
lines) subject to mixed-mode loading by an applied uniaxial tension
(bold arrows), and the unbroken grain-boundary (straight single line)
ahead of the crack during transient depletion of solute atoms, when
their relaxation volume (a) AV < 0 and (b) AV > 0. The solute
he characteristic (shaded region) and
tial value cg outside.
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Ngb(t)let(t) = %(%h(a))l/s (sina)?/3 <, [%]4/5, (9)
where h(a) = 3(w-2a) - S5sin(2a) + Zsin(Za)sinzu. (10)

N§°t(t), the total number of solute atoms with AV < 0 or AV > 0

segregated to all respective sinks in time t > 0, follows as the sum of
the individual contributions, egns. (5), (7) and (9),

NEOE () = NU%e) NP (e) + NEC(e) INCE(e) + NP () INCE(e);  (11)

its variation with angle « is displayed in Fig. 2. We note, when o = 0
no solute is lost, since the interaction energy (1) then precludes
stress-driven segregation to any sink. With increasing «, i.e. mixed-
mode loading and hence a driving force present, the total solute atom
loss rises up to a maximum at o« = 0.41w, followed by a slight reduction
as o further increases towards the mode I loading orientation o = m/2.
The variation with angle o of the numbers of solute atoms segregated to
the grain-boundary in time t > 0, egns. (5) and (9), is depicted in
Fig. 3. These losses have a maximum at o = 0.22n (when AV < 0) or
o = 0.421 (when AV > 0) and vanish at « = 0, as explained before.

To utilise the above results for the problem of solute segregation
during intergranular crack propagation, we envisage crack growth to
proceed in a 'step-wise' fashion, with average velocity v, by sudden
jumps and stops: once embrittled locally through enrichment with solute
at a level sufficient for decohesion of the unbroken grain—bouqdary in
front, the crack jumps forward a discrete distance and arrests, waiting
for further segregation during a time At, whereupon the process
repeats. Provided that each jump takes the crack-tip well into regions
of fresh (and hence tougher) material where negligible depletion has
occurred and the solute concentration is therefore at Cyr the average
segregation can be deduced from the sequence of (small-time) depletions
between jumps, when the crack is stationary, using eqn. (11) [4,5].

Two features are hereby significant. On the one hand, since maximum
solute segregation to all locations near the crack-tip and to the
grain-boundary ahead of the tip occurs when the crack-plane deviates
from the mode I loading orientation (cf. Figs. 2 and 3), crack growth
will be favoured across boundaries that do not lie parallel to such a
plane. The decohesion mechanism associated with the fracture event
studied here, on the other hand, requires a preference for the loading
component of maximum tensile stress. It is thus clear that most of the
grain-boundaries potentially suitable for intergranular crack
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propagation will lie reasonably close to the mode I loading orient-
ation, occupying the range w/4 <as n/2, say. This has a straight-
forward implication for the theoretical prediction of the segregant
coverage on fracture surfaces; a quantity determined experimentally (if
feasible) as an average over several crack jumps across a single
intergranular facet at fixed, albeit usually unknown, angle «. Since,
for o within the range considered, the total number of solute atoms
segregated to all sinks varies only little from its value at o = w/2
(cf. Fig. 2), the expected average total solute coverage, per unit area
of crack path, for the mixed-mode loading situation will be
tot tot

<P> = <N_""(bt)>/vAt = N_"/Z(At)/vAt, (12)

i.e. essentially the same as if mode I loading prevailed [5].

Applications

We now relate the model predictions and underlying assumptions to
experimental observations of two particular fracture phenomena in
heterogeneous materials which are of both current interest and
practical importance.

a) High-temperature brittle intergranular fracture

This phenomenon, first seen as stress-relief cracking within the
coarse-grained heat-affected zone of welds, isvmost prominent in 'as-
quenched' microstructures of low-alloy steels subject to stress
concentrators at temperatures between 300 and 650°C [8]; it depends
primarily on the stress-driven segregation of sulphur near crack-tips,
together with segregation of residual impurities (e.g. phosphorus, tin
and antimony) to grain-boundaries under thermal activation alone [4,9].

Consider a notched bend specimen of CrMo steel austenitised at
1200°C, then quenched leaving substitutionally dissolved sulphur (with
AV < 0) in solution, and stressed. Fig. 4 shows the sulphur coverage
on fracture surfaces, eqn. (12), as a function of temperature predicted
for the average crack propagation velocity v = 0.lums~! and the crack
residence time At = 1ls, using an empirical relation between crack
growth rate and stress intensity, and appropriate values of the
material parameters involved [4,5]. We note excellent agreement with
the measured data over the whole range of coverage, corresponding to
0.2 - 20% monolayer sulphur deposition on, for instance, a (100)
crystallographic plane.

Experimental evidence strongly supports the basic fracture
mechanism. Scanning Auger microprobe analysis indicates that sulphur,



53

101

1018

Coverage (atoms m™2)

107 | 1 | J
450 500 550 600 650

Temperature (°C)

Fig. 4. Theoretically predicted sulphur coverage on fracture surfaces
as a function of temperature ( ), together with the available
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set free during austenitisation, is +the principal source of the
observed segregated sulphur solute [9]. Scanning electron microscopy
and acoustic emission measurements confirm the 'step-wise' nature of
the crack growth, the observed average jump distance being consistent
with the scale of influence of high tensile stress around crack-tips
[10,11]. Finally, optical énalysis reveals the meandering nature of
the fracture paths, suggesting that mixed-mode loading of the crack-
tips prevailed for the most part of their history [5].

b) Hydrogen-induced brittle intergranular fracture

This type of cracking commonly occurs in high-strength steels; it
represents one of the most widely documented examples of environment-
sensitive response of iron-based materials, caused by hydrogen
diffusing to the 1locally enhanced stress field near crack-tips and
acting there synergistically with other embrittling grain-boundary
segregants such as those quoted above [12,13].

Consider a notched bend specimen of NiCr steel under stress exposed
to a gaseous hydrogen atmosphere at room temperature supplying hydrogen
atoms interstitially dissolved (with AV > 0) in the iron lattice.
Fig. 5 shows the predicted hydrogen coverage on fracture surfaces,
egn. (12), as a function of threshold stress intensity for the onset of
crack growth. The coverage is deduced by converting measured data of
the external hydrogen gas pressure relating to this stress intensity
[14], with v = 1lums~! and At = 1s, upon deriving the concentration of
hydrogen in solution and using appropriate values for the material
parameters concerned [4,15]. Unfortunately, there are as yet no means
of measuring the hydrogen coverage itself. However, the qualitative
variation displayed in Fig. 5 agrees with behaviour expected from
observations of the segregation kinetics of more gquantifiable solutes
(e.g. sulphur or phosphorus) whose efficacy in reducing the local
stress intensity rises with the enrichment of grain-boundaries [11,16].
The range of coverage, corresponding to 0.4 - 14% monolayer hydrogen
deposition on a (100) plane, implies an embrittling potency comparable
to that of the aforementioned solutes, in accord with quantum
mechanical investigations [17], while scope for interaction with these
elements remains.

Evidence again supports our model hypotheses. The experimental
conditions ensure that a constant background hydrogen concentration is
maintained from which hydrogen depletes [14]. Scanning electron micro-
scopy analyses here too reveal a 'step-wise' crack propagation growth,
and intergranular fracture surface morphologies suggest mixed-mode
loading of the crack-tips for the most part of their history [18].
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Conclusion

We have presented a kinetic model of solute segregation near crack-
tips during intergranular fracture of materials, based on stress
intensity and temperature. This admits transport of solute atoms to
the crack as well as to the grain-boundary ahead of the crack (the
latter feature being thought a prerequisite for embrittlement to take
place within the fracture process envisaged) when the segregating
point~defects are undersized or oversized and mixed-mode 1loading
prevails. The model predictions and inherent hypotheses have been
correlated with observations of two particular fracture phenomena in
ferritic steels and, unlike other suggestions (see, e.g., [19,20]),
receive support from experimental and theoretical evidence to date.
Moreover, interpretation of these phenomena in terms of the proposed
fracture mechanism 1is quantitatively consistent with the overall
phenomenon of enrichment of fracture zones due to the stress-driven
segregation of embrittling solutes.

The theoretical results have a concise analytic form owing to two
essential simplifications, viz. the assumption that the actual stress
field is that of an ideal sharp crack in a purely elastic body, and the
neglect of random diffusion of the point-defects. Finite element
calculations allowing for tip blunting and plasticity however indicate
total solute flows very much like those in the elastic case, but with
the origin of the flow lines centred at the position of maximum
hydrostatic stress, displaced by about twice the crack root radius in
front of the crack, rather than at the physical crack-tip [5]. Random
diffusion, which would tend to smooth out the transient point-defect
concentration distributions, has been estimated to have merely little
effect on the number of solute segregating in the relevant (short) time
of crack arrests between crack jumps [9]. Such diffusion processes
have been included recently in the case of an isolated crack, when its
tip only acts as a sink for the migrating point-defects [21].

One final point concerns the fact that the addressed segregation and
concomitant grain-boundary fracture events are not specific to the
chemical nature of a particular solute or host matrix in hand. Thus,
whilst the above examples clearly demonstrate the importance of stress-
driven segregation of embrittling solutes as a controlling factor for
intergranular cracking in a certain class of steels, future research
may well find this mechanism operating in other materials as well.

I am grateful to Drs R. Bullough, FRS and C.A. Hippsley for
discussions and comments. The present work was supported by the UKAEA

Programme on Underlying Research.
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CONTINUUM MECHANICS OF MEDIA WITH INTERFACES

Ladislav V. Berka
Institut of Theoretical and Applied Mechanics
Czechoslovak Academy of Sciences
VySehradskd 49, 128 49 Prague 2

Abstract. The basis for the description of the mechanical properties
of materials is the definition of a model representing the characteris-
tic quality of real materials. The first step in the analysis of the
quality of any mechanical system is the definition of a geometrical mo-
del, represented in the branch of materials by a structural model. With
respect to their structure materials can be divided into two groups,
namely simple, with one physical /atowmic or molecular/ level of a struc-
ture, and complex, with the structure on a level of particles and con-
tinuous or discontinuous phases.

This paper is concerned with a model of non-homogeneous materials with
interfaces, i.e. with the polycrystalline structure. It derives quanti-
ties describing materials with volume and surface inhomogeneities and
shows the procedure for deriving the equations of continuum mechanics

for materials with such a structure.

Introduction. All natural, technologically processed and man-made com-
posite materials have a complex internal structure which significantly
influences their mechanical properties and behaviour under load. With
regard to the considerable variety of structural forms and, consequen-
tly, the variety of their influence on the properties of materials it

is necessary to analyse this problem in a greater detail.

The starting point for a theoretical description of the mechanical pro-
perties of amaterial is the choise of the mwodel displaying its quality.
The first step in the analysis of the properties of any mechanical sys-
tem is the definition of a geometrical model, represented, in the field

of materials, by a structural model.

For the purpose of describing their structure, materials can be divided
into two groups, namely simple materials, with one physical level of

structure /atomic or molecular/, and complex materials, represented by
structures consisting of a mixture of homogeneous particles or continu-

ous and discontinuous phases respectively.

The theory of physical structures of solids, crystallography /1/, is
based on point models of simple solid substances, while the theory of

particle structures lacks such Universal structural objects. For exam-
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ple, the model of a quasi-homogeneous or heterogeneous material using
the volume ratio of phases, neglects such inhomogeneities as the inter-
faces, edges and vertices of polycrystalline as well as other grains.
The theory of structures of this type forms the subject of "stereology"
/2/, which defines their stereometric models and invariant dimensions,
i.e. structural parametres.

The deformation of a mechanical system is understood as a relative chan-
ge of the distance between two adjacent points, which can be of a local
or globdl character. In relation to deformation characteristics of ma-
terials, we shall therefore call the deformation of a structural model

a deformation model of a material. The‘present work is concerned with
the model of the material with interfaces. It presents a procedure for
deriving structural parameters and equations of continuum mechanics /3/

for media with interfaces.

Structure of polycrystals. Among complex materials, polycrystals repre-

sent a considerably large group of materials, a typical structural ob-
ject of which is a crystaline grain having, in an idealized case, the
shape of an irregular polyhedron. Besides of the volume of the grain,
also its surfaces, edges and vertices represent important objects of the
polycrystalline structure, on whose number per unit volume of the com-—
plex material also its resulting mechanical properties depend /4/. Such
a structural model of a polycrystal corresponds also to the fundamen-
tal stereological quantities and relations /Table 1/,studied earlier in
metallography /5/,/6/ with purpose of their measurements and determina-

tion of their correlations with mechanical properties.

Table 1. Stereological quantities and their interrelations

Spatial features

Volume Surface Line Point Dimension
o
VV = AA = LL = PP mm
-1
SV = 4LA/1t = 2PL mm
-2
Lv = ZPA mm
_ -3
PVSV/Z = ZPAPL = PV mm

To ensure the possibility of introduction of these objective parameters
also into the theoretical description of the mechanical properties of
polycrystals, i.e. their constitutive equations, it is necessary to de-
fine them analytically. In the author’s paper /7/, it is shown, how it
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is possible to represent the differentials of geometric quantities of
a polycrystalline structure in an analytical space by means of a local

affine transformation. Let

ox;
Xp = X; (xk) ' det[—5§;-] £ O , 1)
be an unequivocal representation defining the structure of materials
in the form of the relation between the Lagrange Xy and the Euler xj
coordinates. The differential element of the polycrystalline structure
is considered in the form of parallelepiped, for the structural compo-
nents of which the differentials of edge lengths, surface areas and vo-
lume contents, the following expressions hold in Lagrange and Euler co-

ordinates respectively, see /Fig.l/,

€ daxtaxy , dv

d XI , 4 SI 1/3 de dSI '

IJK "3 7K
~ AN (2)
d Xy 4a s; = Eijkdxjdxk , dv = 1/3 dxi dsi ’
where €17k and Eijk are the Levi-Civita antisymmetric unit tensors.

Figure 1. Differentials of structure v
components in Lagrange and Euler co- o) f
ordinate systems.

/
d s/

Between the differentials of coordinates dXI and dxi, representing the
edge components of the structure, the following transformation relaFi—
ons hold

09X
d XI - xI,j d Xj ’ XI,j = —6—}2—.~ ’
ax) @)
dxy = x,59% o X0 7 TEXT
and further pay the identities
Xr,5 %5,k = O ¢ X,k ¥k, 6i5 - 4)

where 61j and 6IJ are Kronecker s unit tensors.

Between the differentials of surface structure components dSI and dsi

hold analogously the following transformation relations /7/

’()sI
d SI = SI,j d Sj ’ SI,j = -gg;—— ’ )
Os
- - ‘i
ds; = s;,595 + 83,5775

and further pay again identities
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SI,j Sj,K = 6IK ’

Si,s S,k = Oy - ®)
The differentials of volume structure components transform themselves
according to the relations

DV

dav = DY

av , 2L - S; 4 = det X, 1. (7)
’

—_— Z X_ .
ov I,j "1,3

The representation of the structure of a material requires the quanti-
tative preservation of all structural components in the given macrovo-
lume of the material. Therefore, for the representation of volume struc-
ture components from the microvolume element of a material into the vo-
lume element of an analytical space, shown in figure 2, the following
relation hold '

n
3 (av® - S(EGV(n)/BV)dV (8)
1 vJ) 1
If @v(/@v is written in the form of (7) and the summation according to
(n) is made alternately over S: 3 and Xq 5! we obtain the mutual re-
14 ’
lations
X . . (n) = . (n> . = . S . (“) 9
( I,3 SI:J) (XIIJ) SI:J XIIJ ( IIJ) : ( )
If we put XI = xj , then XI,j = SI,j = 6Ij and after rearrengement
we obtain those relations in the form
3v®™ /av = 0s™,09s = 8x®@/ 0x , (10)

whose meaning is identical with the first line of Table 1 and expresses
the equivalence 6f the volume, area and linear measurements of the quo-

ta of volume structure components in a macro-volume of material.

Figure 2. The representation of h. P
a) volume and b) surface structure Eq. (8) Eq.(11)
components in the analytical space c) X J/

c)

The preservation of the inner surface structure component in the macro-
volume considered, follows from the following hypothesis. The macrosco-
pic elementary parallelepiped with polycrystalline structure is extrac-
ted from the material by a cut leading along the structural surfaces
nearest to the macro-surface of the parallelepiped so that its result-
ing content of the volume remains preserved - as it is shown in figure
2. If the integral over the structural surface is changed into the inte-
gral over the macro-surface, using the transformation relation between

the differentials of surfaces according to the Eq.(5)
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$Sd s; — SSsi'IdSI , V= v, (1)
and, further, using Gauss integral theorem, is changed into the volume
e as g oy av S il av (12)
S. = = ’
SS g o v JO%PS; v’ v

then the term folloving the last integral expresses the specific
inner surface and is identical with the first parameter in the second

line of Table 1, i.e. Sv .

Deformation of polycrystals. The differences between monocrystals and

polycrystals, as far as their structure and properties, are very well
known. Having in mind a chemically pure metal, the structure of poly-
crystal is then characterized by a great number of individual grains
with probability distribution of orientation of crystallographic axis
and of a size. The studies of dependence of mechanical properties of
polycrystals on grains orientation, especially elastic moduli, have
rich bibliography enough /8/. They were started by Voigt /9/ and Reuss
/10/ and in the last twenty years they were advanced by Hashin /11/ and
Krdner /12/. The studies of grain size influence on strength and yield
stress of polycrystals were started by Zener /13/, Hall /14/ and Petch
/15/ in the middle of this century and are not satisfactorily solved
out till now, as seen from some of the latest papers /16/,/17/. This
situation follows from the fact that the presented problem is formula-
ted as geometrical and not as thermodynamical, according to its nature.
The polycrystal is a thermodynamic system of particles described by in-

ternal parameters of the partial volume and and the interface area.

Mechanical properties of materials are influenced by their structure
through the micro-deformation mechanism which manifests itself by the
non-homogeneity of microstresses and microdeformation fields. It is in
the interest of the study of the laws gowerning the formation of mecha-
nical properties of materials to analyse these fields. On the basis of
the works done by Rowinskij /18/ and Dawson /19/, in which small kine-
matic rotations of grains of a polycrystal under elastic behaviour were
proved roentgenographically and microscopically, the author /20/ desig-
ned a mechanical model of a polycrystal with such properties. To verify
previous works and, on the other hand, to obtain approximate guantita-
tive strain and rotation values of polycrystalline grains, author /21/
executed by a micro-photogrammetry method new experiment which proved te
last results and gave new ones. A photoelastic modelling was also used
forwverifyingrof thesmechanismrof grain rotation /22/. An element of a
continuum with grain boundaries as an inherent property is a new mecha-
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nical model in the analysis of this problem. The model of a polycrystal
with idealized grain-boundaries, which has been designated the "ideal
polycrystal" model, consists of elastic grains with normal bonds acting
along them. The results of the stress analysis in bonds show, that the-
re is a rotation of the grain, since the stresses along the grain edges
change and give moments to the centre of the grain. This result shows
that the grain-boundary possessing properties interpreted by the sugges-
ted model, and the grain asymmetry, are the basis of the mechanism
of grain rotation. Thus, rotations observed in a polycrystal during its
deformation, may be assumed to be the result of the same structure and

mechanism.

Continuum mechanics of structured media. The basic structural model in

the contemporary mechanics of materials is the point model of a solid
substance derived from the physical reality of the atomic lattice of me-
tals. In an analytical description this model is represented by the con-
cept of a homogeneous continuum. From the range of real materials only
materials with a single, monocrystalline structural level correspond
accurately with this model. The deformation of point structures is under-
stood as their affine transformation, the coefficients of which are re-
presented by the strain tensor components. The deformation model is then
the deformation of a homogeneous’parallelepiped produced by a homogene-
ous stress field /23/. The deformation characteristics of simple mate-
rials /elastic/ thus depend only on physical quantities, such as the
absolute temperature. Generalization of the deformation model - by the
incorporation of the effects of flexure and torsion - results in the
linearized case of Cosserat continuum, i.e. the Mindlin - Tierstén theo-
ry of polar elasticity, represented by the equations /24/,writen in Lag-

range coordinate system. Here express

Pr= Ty nyo. Qr = Myyn; , the boundary conditions, (13)
Trg,g + Fr = O €1xTkg + Mz g+ G =0, the egs. (14)
of equilibrium,
- 1 .
Ei; T 3 ( UI,J + UJ,I) , the strain tensor, (15)
K = i € U = R
IJ = 2 “JKL "L,KI J,I , the bending-torsion tensor(16)
Kir,r ° Koo, Cwmg(Brg,s * Cxrm Xgx)® O+ the egs. .,
of compatibility,
6r = 1 fwar bu_+aq sz ) =
2 s I I I I (.18)
= 1 s
5 VS( T 6EIJ+- My GKIJ) d V , the virtual work.



63

are vectors of force and moment stresses,

I/ GI'
1

ces and moments, UI is the displacement vector, R
EIJ is the small strain tensor and KIJ

Continuum mechanics of "ideal polycrystal". The theory of the deforma-

where PI' 0 are

Trge Mpgr
are unit volume for-

Il
the tensors of force and moment stresses, F

T is rotation vector,

is the bending-torsion tensor.

tion of granular guasihomogeneous structures /8/ has been based so far,
as shown in the preceeding paragraphs, on the geometry and properties
of volume structure components and their spatial arrangement and has
neglected the influence of other components such as the surface struc-
ture. The derivation of the equations of mechanical behaviour of a gra-
nular structure continuum represents the problem of transformation of
the ecuations of continuum mechanics introduced before. These are writ-
ten in Lagrange coordinates and derivation of those for the continuum
with interfaces is carried out by means of the representation in Euler
coordinate system in which the transformation coefficients xi,J are
identical with the structural parameters. It is in contradistinction to
the non-linear theory of elasticity, in which these transformation coef-

ficients are represented by the displacement gradients.

However, between the differantials of the vectors of stresses and dis-
placements in the Lagrangian and Eulerian coordinate systems, the trans-

formation relation

d P, = XI,k d py a u; = XI,j da uj , (19)

hold analogously. With the use of Egs. (3) and (5) , following relati-
ons arise from Eq. (19), (13),(5),

v

T = M = (20)

13 X1,k 85,0 %3+ Mg s

X1, 55,3 Mkj
After the insertion of the terms from Eq.(20) into the Egs.(14), diffe-
rentiation and arrangement we obtain a system of eguations describing

the equilibrium state of the continuum with interfaces.
o, (21)

(22)
Eror *k,5 Sk,0 B3k 1,5 Sk,a),0 Mk + X1, 5 lxj,k Mk, k -

. . X . . . =
(XI:J sli)lJ th * L3 ‘x]lKlt]k'k -

0.

The virtual change of the differential of the displacement d UI ,EqﬁlBL

have two parts.

(23)

S(a up) = 5(x1,j) dug+ Xp g 5(d uj) ,

the first of which representsa change of an amount of the structure
/ interfaces / and the second one, the change of the usual strain.gradi-

ent. The full change of the macrogradient is then expressed by a formula
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8Up o) = (Xp g5 0y 8%y 4+ uy o Xy 5%y 4+ Xp g Buy )% g

and in which mean xI,ji’ xj,i’ the change of the struc- (24)

tu re quantities and ui,k is elastic microdeformation. We shall show
further the eguations of compatibility, Eqgs.(17), transformed into the
Eulerian coordinate system, when elastic microdeformation is assumed

only .

X, = o ( 25)

€55n (€15 ®51,n * 11
% mgs aqhs qup chp kio +

(26)
1 € € S (s c ) .r]
2 "mgh ®sgqn “pgo °J,h ‘' °s,J “np’,i o

£i4m Enj1 Lemp ®pg,i +
PI ] -
+ Cog (xI'p xq,P),i eoq * 5 o

We have denoted here ci. = XI i XI j the metric tensor of a structu-
KL 14 7

.. = . .+ . L) i

i3 1/2 (XK,l XL,] XL,l XK']) is a fourth order tensor of the
structure. The e is the strain tensor, kij is the bending-torsion
tensor and rO is the rotation vector in Euler - structure - coordina-

re, C

tes. The quantities cy and CE? enter into the theory as orderd values.

j
For virtual work according to Eg.(1l8), after transformation and arran-
gement with the use of equations of eqguilibrium, Egs.(21),(22), we ob-

tain the expression

. 1
8L = Vg{tij Sk Sexy * Xy sl My enny Legpy by Syt

+ ©1pq 51,1 (Pap 51,q),3 97nl} @ v 7D
If we now compare the form of the equations for continua with granular
/polycrystalline/ structure with the equations for a homogeneous conti-
nuum, we find the following differences. First, there is an explicit
dependence of structural /Eulerian/ stresses and strains on structural
charakteristics, Further, there is a difference between the equations
of equilibrium and equations of compatibility in the Lagrangian and the
Eulerian /structural/ coordinate system. The Egs.(21) and (22),in which
the body forces and body moments are not assumed, contain against the
Egqs. (14 ) yet the parts with tij and mij’ multiplied by gradients of
structural parametres. The equations of compatibility contain also si-
milar parts and these afford the oportunity of introducing into the so-
lution, both in the equation of moment stresses equilibrium, and in the
second compatibility equation, the conditions which will enable the des-
cription of the kinemetic motion /local rotations/ of parts of the stru-
cture. The structural continuum will then be incompatible on its own le-
vel, eventhough the macroscopic compatibility will be complied with.
The procedure which is shown here can be concluded also into the des-
deécription of fracture phenomena, if we shall suppose that macrocrack

is straight, but microscopically quasistraight,in a sense of grainboundary.
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FRACTURE OF COATED PLATES AND SHELLS
UNDER THERMAL SHOCK

F. Erdogan and A. A. Rizk
Lehigh University, Bethiehem PA 18015

Abstract. The main interest in this study is in the subcritical crack propagation

and fracture of coated materials under repeated thermal shock. First it is shown that
the crack problem for a cylindrical shell may be approximated by a plate on an elastic
foundation. Then the thermal shock problem for a layered plate supported by an elastic
foundation and containing two cracks of arbitrary sizes and locations is considered.

An additional factor studied is the effect of surface cooling rate on the stress in-
tensity factors at the crack tips.

Introduction

For the purpose of analyzing the mechanics of the problem, in applications many
engineering components may locally be represented by a "plate” or a "shell." In some
cases these components consist of a base material or a substrate and a coating. Thermal
barrier coating of super alloys by ceramics used in jet engines, stainless steel clad-
ding of nuclear pressure vessels, and a great variety of diffusion bonded materials
used in microelectronics may be mentioned as some examples. Typically, these materials
are subjected to severe residual stressés upon cooling from their processing tempera-
tures. During the operation they may also undergo certain thermal cycling. Depending
on the temperature gradients, the underlying thermal stress problem may be treated
either as a thermal shock problem or as a quasistatic isothermal problem in the sense
that the problem may still be time-dependent but with no variation of temperature with-
in the composite solid. :

Usually an important mode of mechanical failure in such materials is the subcritical
crack growth due to creep or low cycle fatigue. The cracks generally start from micro-
flaws near or at the interface, or at the surface and grow perpendicularly to the
nominal interface. For the service life assessment o? the component, aside from the
subcritical crack growth and fracture characterization of the material, what is needed
is the determination of the stress intensity factor as a function of the crack length
and the time.

In this paper a number of unique aspects of the probiem will be discussed. First,
to make the composite shell problem analytically tractable it will be shown that the
crack problem for the shell can be modelled by a plate on an elastic foundation. The
two dimensional composite medium containing cracks perpendicular to the interface will
then be solved under thermal shock conditions. The second question to be studied will
De the examination of the influence of the cooling rate on the stress intensity factors
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in thermal shock probiems. The results will be given for a surface crack, a crack
terminating at or intersecting the interface, and a crack initiating from the inter-
face.

The Temperature Distribution

Subject to verification, for the purpose of analyzing the thermal shock problem,
in this paper the relatively thin composite cylindrical shell will be approximated by
a layered plate on an elastic foundation. The procedure is to obtain the transient
temperature distribution by solving the diffusion equations for the composite plate
problem, to use this temperature distribution in a layered plate on an elastic founda-
tion in the absence of cracks to determine the stress distribution, and finally by
applying the equal and opposite of this transient thermal stresses to the crack sur-
faces to solve the crack problem. Referring to Fig. 1, consider the temperature dis-
tribution in the composite medium which is initially at a homogeneous temperature Te
and at t >0 and x =0 {is subjected to the thermal boundary condition shown.

y
L
NV
Enwy Ez,v2 2 T,(0,1)
ka0, |  Ka,,0, MY
M
O-TJI' b| o bz | *
L
h. hg_ ;
N
0| #
L |
(a)
Fig. 1 The crack geometry and the temperature boundary condition.
Defining
T](X,t) - Too = 91(X,t) > (1=]’2) ) (])

the problem may be formulated as follows:

2
36, 30
io] i .

-1 . (i=1,2) , (2)
2 D ot

0,(x,0) =0, (i=1,2) , (3)

. , 30y(hyst) 98,(hy,t)

8y(hpst) = Glhyut) 5 k) —g— = kg~ (4)

3 =
X Sz(h-l +h2,t) =0, (5)
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0,(0,t) = B H(t) , 8, =T, - Tu s (6a)

)
0,(0,t) = EQ-[tH(t)- (t-t H(t-t )], 6, =T - T (6b)
(o]

[5} s} o
where k% and Di , (i=1,2), are the coefficients of heat conduction and the thermal
diffusivity, respectively. The solution of the problem may be obtained in a rather
straightforward manner by using Laplace transforms and the residue theorem [1], [2].
Thus, by defining the dimensionless quantities

1
X' = x/hy, om= (D/0,)%,  n=mkj/ky L T tD]/hf ,

i

T

. tonl/hf .y = mhy/hy (7)

for the boundary condition (6b) we find

8, (x,t) © 2
_J_e___= T2y (e”™n _q)x
0 To n=1

cosxn(x'-l)cosxny+nsin)\n(x'—T)sinan
* 3 ,0<x'<1,T§T0,

To)\n[(1+ny)51n>\ncos>\ny+ (n+>\)cos>\nsm)\ny]

2
2 T
—_—=1-27 e (e O Na1)x

0 n=1

L 3 I_ :
*cos)\n(x 1 )coskny+ nsm)\n(x 1)s1n)\n'y

, O0<x'<1, >t ,

3 . . 0

Toxn[(1+ny)s1n>\ncos>\ny+ (Y+n)cos)\ns1n)\ny]
0,(x,t) o 2
-—-——26 = ?T— +2 7 (e Pn-1)*

0 o] n=1

cos[A_(x'-1-h,/h;)m] h

* 5 n 221 ’]<X'<]+T{2"T<To’

Tokn[(’l‘”nY)an)\nCOS?\nY“ (n+y)cos)\nsinkny] 1

2 (9)

0,(x,t) o 2 AT
> =
L1 -2 (e %)
0 n=1
cos[A_(x'=1-h,/h, )m] h
* 3 - n 2 1 ,1<x'<]+—ﬁ—2-,'r>ro,
Toxn[(]+ny)s1n>\ncos}\ny+ (Y+n)cos>\nsin>\ny] 1

where An , n=1,2,... are the roots of

cosA cosyA - msind sinyA =0 . (10)
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The solution for the boundary condition (6a) is obtained by letting T, > 0 in (9)
and (10).

Thermal Stresses in the Uncracked Plate

Referring again to Fig. 1, if the uncracked infinite composite plate is elastically
supported, it will remain flat under the selfequilibratina transient thermal stresses.
Using the symmetry conditions and the Hooke's law, and integrating through the thick-
ness, the stresses due to the temperature distribution (8) and (9) may be expressed
as (see [2] for details)

E
T _ 1
O]yy(x’t) - ]"V] [Eo(t)"aie] (X’t)] ) 0<x< h'l ] (]1)
T (xt)=-—Eg——[ (t) -ale,(x,t)], h, <x<h (12)
Toyy'Xe T-v, o QP Wbl Ty 2
c(t) = E1aih](1-v2)e](t)+-E2aéh2(1—v])62(t) (13)
0 E]h](l-vz)'+E2h2(1-v])

where
- 1M . 1 (M*hy
8,(t) = — 8, (x,t)dx , 6,(t) = — 0,(x,t)dx . (14)
1 h 1 2 h 2
170 2

In the axisymmetric deformations of a cylindrical shell due to the resistance pro-
vided by curvature to transverse displacements, the shell having a mean radius Rn
and thickness h may be approximated by a plate on an elastic foundation having a
stiffness x = Eh/Rﬁ [2], [3]. Thus, for a composite shell it may easily be shown
that

X = (Eqhy + Ephy)/RE (15)
where Rn is the radius of the neutral circle and may be determined from simple equi-
librium considerations as follows:

R =R, + :;-+ Ez:zﬁhlzhﬁ) . (16)

no 1M*E2N2

The Crack Problem

To determine the self equilibratina transient thermal stresses the cylindrical shell
is approximated by a fully constrained flat plate, the transverse constraints coming
from an elastic support. Since the plate is infinite, in the uncracked plate the in-
plane stresses Oyy and o,, are independent of the stiffness of the support. In
the crack problem, however, there will be local bending and the stresses will depend
on the stiffness of the support. Thus, for the problem described in Fig. 1, Navier's

equationsparessolvedsmingadditionptogthe standard continuity, reaularity, and boundary
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conditions, under

oy = 0, gy v XUy =0, x= h] + h] »,y=0 (17)
= oV . =

01yy(x’0) - "O]yy ] a'l <Xx< b'l H V'l (X:O) =0 H 0<X<a'| s b] <X<h1 s (]8)
I . -

ozyy(x,o) = ~Opyy > 3 <X < b2 ; v2(x,0) =0, h]< x<a, , b2< X< h]< hy . (19)

By defining the unknown functions

800 = v (x,40) 5 (i=1,2) , (20)

the problem may be reduced to the following system of singular integral equations (see
[2] for details)

by 1 ., by n(l+y) 7
ja [+ kyq(x,s) 1o, (s)ds + ja 1008)05(s)ds = - =gl (,8) g <x<y
1 2
(21)
by by 1 n(l+ey) 1
Ja kyy (%,5)d (5)ds + L [t kg8 ogls)ds = - loop (x,t) , ap<x<by
1 2
(22)
subject to the single-valuedness conditions (if a;>0, by ta, » by <hy +h,)
by
J pi(s)ds = 0, (i=1,2) . (23)
Qs
j
Referring to [4], the general solution of (21) and (22) may be expressed as
¢:(s) 9(s) b, , O<Re(a,.8.)<1 , (=1,2) " (24)
'S=_—'-,———~:"a'<5<'s <Rela,,B:)< > (J=1, H
J (S-aj)aJ(j-S)BJ J J JJ
where gj is unknown and is H-continuous in a; <s <b. , (j=1,2) . The asymptotic
analysis shows that the kernels kij , (i,j=1,2) can be expressed as
_ . f s .o
kij(x,s) - kij(x’s) + k.ij(xss) H (1’\]"] 32) 5 (25)

where k?. » are bounded in the corresponding closed intervals a;<x<b, , ajisibj >

(i,§=1,2) and k?j may have end point singularities. For example, it can be shown
that )2

2 c Cyo(hy=x) Cqy4(hy-x
k?](x’s)=__1__+ 6x____axt_ . _‘m G2 Gt

stx (s+x)2 (s+x)3 2hy-x-s (2h1-x—s)2 (Zh]-x-s)2

a]< (X;S)<b~| s (26)

where €11 20 and 3 are known bi-material constants [5]. Similar expres-
sions for the other kernels and details of the asymptotic analysis are given in [2].
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Thus, in the limiting cases of a; = 0, b1 = h1 s 8y = h] , and b2 =$h] + h2 the
end point singularities of the kernels would have an influence on the singular behavior
of the functions ¢] and .¢2 and the characteristic equations givina 0 and Bi s
(i=1,2) may be obtained by using the function theoretic method [5], [4]. After
determining a; and B; the functions 9 » (i=1,2) could be found by following [6]
and [7]. The stress intensity factors at the crack tips may then be defined by and

evaluated from

] _ lim huy 91(31) -
I\](aj) X-’aj-O aJ (X 0) ]+K -|>0 s a2>h~l 3 (J_]’Z)
(27)
lim ) IV g.(b.)
k](bj) = x+bj+0 /Z(X—Bj) ojyy(x,O) = —T;%S——z;%:;%;7;—, b]< h] » by< h1+h2 ,
J J

(3=1,2) (28)
tp 72 9y ) (dyyteydpp) L

(x,0) = R ,a
) (h1-a])a]sinn8] 1

() = 10 2 xen )™

x+h +0 >h] s

%2yy
(29)
by V2 g,(hy)(dyq-dy o))

Ty (b,=h))82 sinma, ’

_ lim o -
k-l(h]) - x+h]_0 /?(h]'x) G]yy(xao) -

by<hy , ap=h; , (30)

where the bimaterial constants dij , (1,3=1,2) are defined in [5]. Similar expres-
sions may be developed for the stress intensity factors kxx(h]) and kxy(h]) at

the singular point x = h] .,y =0 [5].

Results and Discussion

First to show the significance of the elastic support in dealing with crack prob-
lems, the results of the plane strain edge crack problem for a homogeneous plate under
uniform tension % in y direction with or without the elastic support are given in
Table 1. In this case we have ‘h1+h2 =h, E] = E2 =k, V] TV TV, ag = 0, and
b1 = b (see Fig. 1). Note that the constraint provided by the support can reduce the
stress intensity factor quite considerably.

Regarding the main contention of this paper that a cylindrical shell with an axi-
symmetric circumferential crack may be approximated by a plate on an elastic founda-
tion, some results comparing the stress intensity factors resulting from a uniform
tension are given in Table 2. Similar results for the transient thermal stresses are
shown in Table 3. It may be seen that the approximation is, in fact, fairly good.

Some typical calculated results showing the stress intensity factors in a layered
plate on an elastic foundation as a function of the dimensionless time <t (the
Fourier number) are given in Figures 2-9. The thermoelastic properties of materials
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TABLE 1. Normalized stress intensity factors k](b)/c /b in a plate containing an
edge crack and subjected to uniform tension o_ under “plane strain conditions with-
out and with elastic support. xh/E = 0.01108.° x is the stiffness of the support,

h s the plate thickness and b is the crack depth.

b/h x =0 x$0

0.0 1.1215 1.1215
0.1 1.1892 1.1574
0.2 1.3673 1.2725
0.3 1.6599 1.4267
0.4 2.1114 1.5983
0.5 2.8246 1.8135
0.6 4.0332 2.0775
0.7 6.3549 2.3801
0.8 11.955 2.7399
0.85 18.628 2.9835
0.9 34.632 3.3660

TABLE 2. Comparison of the normalized stress intensity factor in a uniformly
stressed plate with an edge crack under plane strain conditions supported by an
elastic foundation of stiffness X with that in a cylindrical shell containing an
internal circumferential crack and subjected to a uniform axial stress. The shell
results are obtained for R./h =9 in [8]. The stiffness of the foundation is

X = Eh/Rﬁ s Rn = Ri + h/2 ,1 or for Ri/h =9, xh/E = 0.01108.

k](b)/oo/E
b/h Shell Plate % Error
0.1 1.158 1.157 -0.09
0.2 1.253 1.272 1.49
0.3 1.392 1.426 2.44
0.4 1.568 1.598 1.91
0.5 1.779 1.813 1.91
0.6 2.025 2.077 2.57

TABLE 3. Comparison of the normalized stress intensity factor k (b)/cg b ina
nlate on an elastic foundation containing an edge crack under pTanl strain conditions
with that in a cylindrical shell containing an internal circumferential crack. In
both cases the external load is the transient thermal stresses resulting from a step
change 6, in the wall temperature. Ri/h =9, xh/E = 0.01108 , T = tD/he ,

og = -Eaeo/(1—v).

0.5

n

T = 0.01 T = 0.05 T =0.1 T
b/h

Shell Plate Shell Plate Shell Plate Shell Plate

—_

0.962 | 0.957 0.833 | 0.821 0.724 | 0.709 0.277 | 0.261
0.657 | 0.653 0.701 | 0.691 0.633 | 0.621 0.247 | 0.233
0.426 |0.432 0.589 | 0.592 0.560 | 0.559 0.224 | 0.218
0.300 | 0.307 0.501 | 0.509 0.502 | 0.507 0.206 | 0.200
0.238 | 0.240 0.432 | 0.435 0.453 | 0.437 0.190 | 0.183
0.205 | 0.207 0.378 | 0.379 0.408 | 0.408 0.174 | 0.168
0.185 | 0.187 0.334 | 0.337 0.367 | 0.367 0.158 | 0.153

[oNoNoNo N ool
OO WN—O
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used in the examples are given by the following table:

Material Pair ké/ki DZ/Dl aé/ai E,/E; \)2/\)1 Ri/L XL/Ey

A 3 3 0.75 1 1 9 0.01108
B 3.385 4.070 2.294 0.611 1 9 0.01185

Material pair A corresponds to a stainless steel layer (mat. 1) welded on a ferritic
steel base simulating the cladded pressure vessels. The Pair B represents a ceramic
layer (mat. 1) bonded to a steel substrate (mat. 2). The normalizing stress intensity
factor used in the figures is given by ol/@ , where og = —E]aieo/(l-v]) and & is
the crack length. The results given are largely self-explanatory.

Figure 3 clearly shows the effect of the loading rate as measured by T, on the
stress intensity factors. In Figures 5-9 the crack either terminates at or crosses
the interface. In Fig. 5, since E] > E2 , at the crack tip we have a stress sinau-
Tarity 3] that is greater than 1/2, whereas for the same reason in Fiqures 7 and 8
o is Tess than 1/2. Figure 9 shows a sample result for the stress intensity factor

. . . . _ lim B
kX in a crack crossing the interface defined by kx» yaﬂ+0y oxx(h],y).
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1. Pundamental equations

The hardening of surface layers is frequently necessary for technological
reasons. Coated solids get the required properties and become resistant to fric-
tion. The coatings, however change the material properties, in the result the solid
is no longer homogeneous. In the case of sharp changes in the values of material
constants the redistribution of stresses, arising from a heat flux or (and) diffu-
sive mass flux can be significant. The effect of thin coating of a material with
high Young’s modulus is particularly pronouncing. In the limit cases one can assu-
me that the layer is inextensible. This assumption let us make the use of the
methods and notions of the fracture mechanics.

The system of partial differe'ntial equations of the diffuso-thermo-
elasticity will serve as a point of departure. In the stationary case we ob-

tain the following system of equations

(1-2v)V¥ux + graddivux = 2(1+v)[aggrad® + acgradc]. (.1

Ve =0, ¥c =0, 1.2) .
where 1x denotes the displacement vector, ® is the deviation of temperatu-
re with respect to that of the natural state T, ¢ denotes the diffusing mass
concentration, u, A are Lamé’'s constants, v - Poisson’s ratio, Ogr Oy T mate-
rial constants,
The constitutive equations, the generalized Duhamel-Neumann relationships,
take the form

O =2ue + (\tre - 1,0 - 700)1, 1.3)
while the remaining constitutive equations read

5 = Yptre - dlc +mO, M =-y tre +d19 + ac. (1.4)

Here O and £ are the stress and strain tensors, respectively, 1 is the unit
tensor, s - the entropy, M - the chemical potential, Yoo Yer d‘, a, m are ma-
terial constants.

Animportant problem in the mechanics of solids is to find the distribution
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of stresses, and particularly the stress concentration. In the diffuso-termo-
elasticity we wish to know whether such a stress concentration, or per-
haps the regions of stress singularities can be generated by the fields of
temperature and/or that of mass diffusion. The purpose of the paper is to
determine the distribution of stresses in solids to which thin, inextensible
coatings are bonded. It can be assumed that either the diffusing mass can
penetrate through the membrane or that the membrane itself is its source.

2. The boundary value problems for solids with inextensible coatings

We aSsume that the bending rigidity of an inextensible membrane is
negligibly small. Consequently we can assume that there is no normal
stress component exerted by thermal or diffusive effects. If a solid is of
layered type, i.e. a semispace or a layer, and its bounding plane is coated
in the entire region then the shear stress components depend on the cha-
racter of the distribution of heat, and diffusion fluxes over the bounding
membrane. They will be continuous functions provided heat and diffusion
fluxes are sufficiently smooth. On the other hand if the bounding plane is
coated only on its part singularities exist in the distribution of the shear
stress components, and the character of the singularities does not depend
on the distribution of heat and/or diffusion fluxes.
Consequently we obtain that the tangential components of the displacement
vector vanish over the entire bonding. The normal component of the displa-
cement vector is to be determined from the solution of the boundary value
problem. The second mechanical boundary condition states that the normal
stress component is zero. In general case the amnalytical solution is not
available. In the case of the axial symmetry the problem has all the fea-
tures of the general three-dimensional one, and the solution can be deter-
mined analytically in terms of special functions. Therefore we shall discuss
the axially symmetric cases.
The system of partial differential equations (1.1)-(1.2) in the cylindrical
system of coordinates > = (r,9,z) with axially symmetric displacement ve-

ktor ux = (u,0,w) assumes the following form
2(1-v) Bu +(1-2v)Du +93/rD(ru) = 2(1+v)9/or(ug® +u c),
(1-2v) B,w + 2(1-v)D*w +r '3/0rD(ru) =2(1+v)Diag®+a c),  (2.1)
(B,+D*0(r,2)= 0, (B +D¥)eclr,z)= 0
where we have employed the symbols denoting the differential operators
B, = é—,-u‘?——-kr’ k=12 D=3
In the case when the range of re(0,») the system of the partial differen-
tial equations (2.1) can be reduced, by means of the Hankel integral trans-
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forms of zero and first order, to the one of the ordinary differential equa-
tions

[(1-2v)D* - 2(1-v)§*10t -EDW = -2(1+v)E(ag + 0 @),

[2(1-v)D? - (1-2v)E%1% + EDE = 2(1+v)D(xgd + x 8), (2.2)
(D%-e%)8 = 0, (D*-E%)é8 =0,
where

-
ﬁ(E.z)=H1[u(r,z);r->§] s fru(r.z)Jt(rE)dr.
0

#(E,2),8(8,2),8(E,2) = H [w(r,z),0(r,z),c(r,z);r>E] =

[riw(r,2),0(r,2),c(r,20] (r)dr.
0

The solution of the system of differential equations (2.2), for z 2 0 is easy
to find. If we take into account the Duhamel-Neumann constitutive equa-
tions

Orz(r.z) = u(Du + d/0r w),
(2.3)
0,,(r.z) = (A+2W)Dw +Aar1o/or (ru) - (3r+2u)(xg O+ cC),
and the boundary conditions
Ozz(r,O) =0, u(r,0) =0, (2.4)

we obtain the following solution of the system of equations (2.1) in terms
of the inverse Hankel transforms of the zero and first order:

2(1-v)ulr,z)

[}

(1+v)zH‘[(a9A(E) + xch(E))exp(-lEz);E-> rl,
2(1-vIw(r,z) = —(1+u)HOIEQI(I-EZ)(ueA(E) +acB(E)}exp(—Ez);E->r].
(1-v)0,, (r,z) = (1+v)uH [(1-EzX 0 g A(E) + o B(E)}exp(-§z);E>rl,
(1—\»)0”(r.z) = (1+v)quo[E(a9A(E) +acB(E))exp(-Ez);E->r], (2.5)
(1-\))0"(r,z) = -(1+\))uH°[(4—Ez)(ueA(E) +acB(E))exp(—Ez);E->r],
6(r,z) = Ho[A(E)exp(—Ez);E»r].

clr,z) = Ho[B(E)exp(-Ez);E*r].

It is evident, from the solution (5), that all the mechanical quantities,
depend on the value of the expression (aeA(E) + ucB(E)}. Parameters A(E) and
B(E) are to be determined from the solutions of the heat conduction equa-
tion, and diffusion equation, respectively.

3. The relationships between the contact shear stress and the distribution
of temperature and mass diffuzion on the bounding plane

In order to find the contact stresses it is not necessary to follow
the whole procedure of finding the transforms parameters A(E) and B(E)
with the consecutive inversion of the corresponding Hankel transforms. We
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are able to do it directly. Let us make use of the formula which can be de-
rived from Eqs. 3, 6, and 7 of the system (2.5). We find the following equa-
tions (compare [6,81):

$-tr0,r,201 =1 ruH [1-E2)E{ag ACE) + a B(E) exp(-Ez);E>rl, (3.1)

and
D(aeA(i) + ucB(E))= -Holﬁ(oteA(E) +ucB(§)}exp(-—§z);E-’ rl. (3.2)
Comparing the above results in the limit, for z » 0, we find the following
relationship:
r
) I € T o -
0,,(r,0) = -1£%y, ofsaz[aOO(s,z)+ucc(s.z)]z=ods. (3.3)

This means that we can find the shear, contact, stress component by the
integration as shown in Eq. (3.3). The next relationship we find by com-
paring

%F[uee(s,O) + acc(s,O)] =—H‘[E(ueA(E) +acB(E))exp(-—Ez);E-> rl, (3.4)
and
D[Om(r,z)]!z=0 = -Zt—g-uﬂitiweA(E) +o B(E));E>rl, (3.5)

whence we obtain:
= oltv 9
D[Om(r,z)]iz=0 =2 =437 [uee(r.o) + acc(r,O)]. (3.6)

Formula (3.6) furnishes the value of the shear stress gradient, the distribu-
tion of the stress itself cannot be determined in this way since in order to
integrate with respect to z one would have to know the solution. However
it is noteworthy that, in the case of Dirichlet’'s boundary conditions, the
right hand side of the equation is known from the boundary conditions, and
it is not not necessary to know the solution of differential equations (1.2)
in order to find the shear stress gradient.

The formulae of a similar type as above can be obtained for Ozz(r.z), and
for the sum 0,p(r,0) + Gg4(r,0) [8].

4, Distribution of contact shear stress component in solids with coatings

In the case of continuous coatings the problem reduces to finding the
function of two variables w(r,z)= [uoe(r,z) + acc(r,z)] from the solution of
the equations (1.2) together withthe given boundary conditions, and consecu-
tive differentiation and integration as shown in Eq. (3.3). The value of w(r,0)
denotes either the value of the boundary conditions of Dirichlet’s type,
or it can be computed from the solution of the differential equations in
the other cases (Neumann’s, radiation type, or mixed boundary conditions)
It is important to know how the contact shear stress behave depending on
thessmoothnessrof wlr;0)-on:thesboundary. We shall consider three particu-



80

lar cases. In the first case function w(r,0) is continuous while its first de-
rivative is discontinuous at r = a. In the second case there is a jump in
the value of function at r = a. In the third case we consider the axially
symmetric Dirac’s distribution. From the form of equation (3.3) we see
that for the distributions of w(r,0) such that both the function itself and
and its first derivative are continuous the shear stress is also a smooth
function. As an example of the first case we take

w(r,0) = xg®(r,0) +o cl(r,0) = ya %(a®-r®»H(a-n), (4.1)
where H(.) is the Heaviside unit distribution. From the solution of Lapla-
ce’'s equation

Vz(aee(r.z)+ucc(r.z)) = Folr,z) =0 (4.2)

which results from Egs. (1.2), we obtain [5,9,11]
a—iw(r,z)lz_o=-z—}ﬁ (aB)J (rE)dE =

= [(a+r)E(k) 2(a+r)K(k) |, k= —ai;—_- (4.3)

where K(.) and E(-) denote the complete elliptic integrals of the first and
second order. Now, if we substitute the result from (4.3) into Eq. (3.3) we
shall obtain the contact shear strain distribution also in the form of the

complete elliptic integrals:
0,,(r,0) = 2yt jz J,(aB)], (r) dE =

Ly G, [(a-r)(a2+zrz)x(k)-(am(az 2PEW, k=230 (4.4)

It is evident from formula (4.4), and the properties of the complete ellip-
tic integrals that function Grz(r,O) is continuous in the entire region re<0,»),
so is its first derivative. However, at r = a there is a point of inflexion.
In the second case we take
w(r,0) = ug®(r,0) +a,c(r,0) = CH(a-r), (4.5)
i.e. with the jump at r = a in the value of [w(r,0)] [r=a = €. Then we obtain
$TlegOlr.z) tusotra =~CaﬁJ‘(Ea)Jo(Er)dE. (4.6)
The integral in (4.6) can be represented in the form of hypergeometric se-
ries which also in this case reduces to complete elliptic integrals (see [3]):

S wirz) =-2cC {a(az—rz)_iE(r/a), r<a, -
oz B, 7 T r(r2-a?) 'E(r/a)-r 'K(r/@), a<r,

= S [@-rrBm +a+r K (K)]. 4.7
In this case the contact shear stress assumes the form
6,,(r,0) = Cau%’-ﬁ (aB)J, (rE) dE =
-—Cu +y -1 ot a[K(r/a) -E(r/a)], r<a _
= -—[(a HYE(K) + (a+rT K (k)]
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1 (1+v) r+arri+a?
cu AR ra (L2 g (k) -E(k)], k=2E, (4.8)

The distribution of shear stress, given by Eq. (4.8), is shown in Fig.i.
The solution for the third case can be obtained in a similar way, or by
differentiation of Eq. (4.8) with respect to r and division by 2nxr. We ob-
tain

21,00 = Cugy 8 L (e i B (R) + (a e TR (KD, (4.9)

"M:r.mm;t.-()m

2 4 & 8 18 12 14 .li 18 i

Fig.1 Contact shear stress in case of step function

?cons_t'On

Fig.2 Shear stress for delta distribution

5.A method of solution for discontinuous coating
By discontinuous coating we shall understand finite membranes bond-
ed to the bounding plane. It will be shown that there appear shear stress
contration far away from a source of heat and/or mass diffusion. Now, for
circular regions of bonding we have, instead of (2.4), the following mecha-
nical boundary conditions on the bounding plane z = 0
Ozz(r,O) =0, re {0,m),

u(r,0) =0, re<0,b), 0, (r,00=0, re(b,e) .1

We assume that the boundary conditions for temperature and mass diffu-
sion are of the form
aeeir,O) = Ol(r)H(al-r), ucc(r.0)= Oz(r)H(az—r), al<b, az<b. (5§.2)

= a_= a, we can take the sum of the boundary con-

In a special case when a, 2

ditions
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xg®(r,0) + x.c(r,0)= $(r)H(a-r), (5.3)
corresponding to the equation V’[uee(r.z) + ucc(r,z)] = 0. Since we can make
use of the superposition principle it is sufficient to consider the boundary
conditions in the form of (5.3).

For mechanical boundary conditions (5.1) the solution of Eqs. (1.1) can be
written down in the form

u(r,z) = HtlE—i{-2(1~v)+Ez)¢(E)+(l+v)£ueA(E) +o¢cB(E)])exp(—Ez);E->r],
Grz(r,z) = Zqul(l-Ez)tlJ(E)exp(—Ez);E->r]. (5.4)

Here §(E) is the Hankel integral transform parameter which can be deter-
mined from the set of dual integral equations, obtained by substitution of
uf(r,0) and Grz(r.o) into the boundary conditions (5.1)2. and (5.1)3. The form
of the solution (5.4) is such that condition (5.1); is already satisfied. In

this way we obtain:
[00]

HIE ' §(E);E>r] = %’—t‘;—of[uemz) + o BIE)]J (Er)dE = £(r), re(O.l;),s)
3.
HL(E);E>r] = 0, re(b,w).

The solution of the set of dual integral equations (5.5) is known to be:

b
$(8) = Z [g(s) sin(sE)ds, sgls)= /%ﬁ(t)tztsz-tz)“’zdt, (5.6)
[ ! 0
and b
9 2__2;1/2
orz(r,o)=-zu/—,€;,—r—{rfg(s)(s -’y 2 ds}. (5.7

if the thermal and diffusive boundary conditions are in the form (5.2) then
rf(r)= E!’[meetx,mwcc(x,O)]xdx. (5.8) .

If we assume that %(r) in (5.3) is constant, say 3(r) = C then we obtain:

gls) = (2072 1Yy ¢ [5- As%-aFH(s-a)],
_ 1+u 1 b a’), .29 (s*-r%)
21,00 =248 [ Ly ) a fmds]. (5.9)

max(r a)

Thus we have obtained the singularity in the value of shear stresses for
at the radius of the bonding circle. The singularity is one over the square
root of the distance, and its behaviour does not depend on the distribution
of the step wise function. The singularities at the jumps of the distribution
of temperature or that of the mass diffusion is logarythmic. In Fig. 3 we
have shown the diagrams for a=0.1, 0.5, 0.9, and 1.0. The value C is the sa-
me for all curves.

There is another way of getting the solution of the boundary value problem
(§.1). Namely we make use of the results discussed at the preceding points,
Eqsv(3i3)rand theparticular'case(4.8). The solution then obtained is valid
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Fig. 3 Contact shear stress distribution for finite bonding (r=1.0)

for a continuous bonding extending over the whole boundary z = 0. To ob-
tain the solution for the bonding of finite radius we have to find the dis-
tribution of shear stress in the part forr > b, and then subtract the solu-
tion for an isothermal and isodiffusive case with the same distribution of
contact shear stress for r > b, however with the opposite sign, and the va-
nishing radial displacement u(r,0)=0 for re {0,b). Thus we obtain the follow-
ing set of dual integral equations:

H E'¢(E);E>r] = 0, re<0,b),
(5.10)
H1[¢(E);E->r] = -Orz(r,O), re(b, o),

Here Orz(r,O) is the value of shear stress found from Eq.(4.8).

6.The stress intensity factor

The solution of the set of integral equations (5.5) or that of the set
(5.10) affords in the result the value of contact shear stress. We see that
for a distribution of w(r,0) = aee(r.O) + otcc(r,O) > 0 there appears a singu-
larity of the type corresponding to mode Il i.e. in torsion of a solid with a
disc shaped crack. Consequently, we can use the methods of fracture mecha-
nics also for problems of bonding of thin inextensible layers. For the par-
ticular case discussed at point 5 we have obtained the distribution of con-
tact shear stress. The stress intensity factor is the coefficient which stays
at the term with one over square root of the distance from the periphery of

the membrane. We have:

_ 214y bZ-a%
Kpp= 28282 ucpfi- I3 (6.1)

If the value K does not exceed the experimental value Kuothen the mem-
brane is bonded to the solid. The initiation of the debonding or cracking

occurs when these two values are equal.



Bibliography

1 Adda Y., Philibert J. La Diffusion dans les Solides, Inst. Nat. Sci. et
Techn. Nucléaires, Vol. I, 11, Paris 1966,

2 Cranck J. The mathematics of diffusion, Clarendon Press, Oxford, se-
cond edition, 1975,

3 Eason G., Noble B., Sneddon I.N. On certain integrals of Lipschitz-Han-
kel type involving products of Bessel functions, Phil. Trans. Roy. Soc.
London, Ser. A., Vol. 247, 1955, 529~-551,

4 W. Nowacki, Thermoelasticity, 2nd Edition, P.W.N.-Pergamon Press,
1986,

5 H. Olesiak, Z.S. Olesiak, J. Slizewicz, Stress concentration in elas-
tic coated solids generated by thermodiffusive fluxes, submitted for
publication in Surface Physics,

6 Olesiak Z.5. Influence of surface heating on coated elastic solids, J. Ther-
mal Stresses, 12(1989), 293-303,

7 Olesiak Z.S. Stresses in solid bodies exerted by thermodiffusive effects,
Teubner Texte zur Mathematik, vol. 111, 217-223,

8 Olesiak Z.S. Stresses due to thermal diffusion in elastic solids with
coatings, 3rd Conference on Surface Physics, Inst. Techn. Phys. Mil.
Techn. Acad., Warsaw, 1989,

9 Olesiak Z.S. Delaminacja cienkich pokry¢ i pekanie osrodka sprezystego
na skutek dziatania efektow termodyfuzyjnych, Zesz. Nauk. Pol. Swieto-
krzyskiej, Mechanika 45, 1989, 7-23,

10 Oberhettinger F. Tables of Bessel transforms, Springer Verlag, 1972,

11 NMpyaunxos A.M., Bpuuxos 10.A., Mapnies O.N. Unterpanu n pRas,cneunnansuue
oyhxunn, Hayxa, Mocksa, 1983,

12 Sneddon I.N. Special functions of mathematical physics and chemis-
try, 3rd Ed., Longman Group Lim., 1980.

Acknowledgment

The research was supported by Ministry of National Education of Po-
land under CPBP 01.08-D2.4.



CRACK PROPAGATION IN MATERIALS WITH LOCAL
INHOMOGENEITIES UNDER THERMAL LOAD

A. Bettin, D. Gross

Institut fiir Mechanik, TH Darmstadt
Hochschulstr. 1, D-6100 Darmstadt

Abstract.The quasistatic crack propagation problem in a plane region with inhomogenei-
ties under thermal loads is investigated. The thermoelastic problem is formulated in terms
of singular integral equations which are treated numerically by an appropriate boundary
element method. Several examples are discussed. They illustrate the applicability of the
solution procedure.

1 Introduction

A crack starts to propagate if certain parameters like stress intensity factors become cri-
tical. Then, only in special cases the crack moves along a straight path. In general,
depending on the stress field, the crack path will be curved. Especially this will hap-
pen, if the body has inhomogeneities like inclusions, holes or interfaces between different
materials. Because of the complexity of the problem there are only a few investigations
about path predictions in the literature, e.g. [7]. Moreover they all are restricted to pure
mechanical loading of the structure.

Similarly, for thermoelastic crack problems only a few analytical solutions are known,
all concerning infinite, plane regions with straight cracks [2,3,6]. The problem of a ther-
mally loaded slightly curved crack was analyzed in [1].

In this paper a method of path prediction is proposed for thermally loaded curved
cracks, propagating quasistatically in a plane bounded or unbounded region. It bases on
an integral equation formulation which leads to a numerical solution procedure in terms
of a boundary element method.

2 Integral equation formulation

Using three complex potentials ®(2) , ¥(2) , ©(z) with z = = + iy the field quantities of
plane thermoelasticity can be described by the generalized Kolosov equations [2,5]:

cetoy, = 20¥(x)+¥()]
0z — 0y + 2iT0y = —2[28"(2) + ¥'(2)]
2ufu+iv] = k®(z) — 28'(2) — ¥(2) + £20(2) (1)
20rpT = Re[0'(2)]
2arplgs +ig) = —Ar©7(z)
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3—v
1 t : = =1
plane stress =g y , Ko
plane strain Ki=3—4v , Ky=1+4v.

Herein T denotes the temperature, g + ig, the heat flux vektor, v the Poisson’s ratio,
p the shear modulus, o the coefficient of linear thermal expansion and Ar the thermal
conductivity.

We now consider an infinite plane with a traction free curved crack R and an inhomo-
geneity e.g. a hole with the boundary S. The plane is loaded by a stationary temperature
field (Fig. 1).

Heat conduction
problem

Elastic
problem

—(d +ir')r
—~N

—(02 -}- 1T2)R

- (a'l +‘i‘r‘l)s
N

- (e +ir?)s

®

Figure 1: Thermoelastic crack problem

The crack is assumed to act as an isolator while the heat flux shall be undisturbed by
the hole. With these assumptions the problem can be solved by the superposition of heat
conduction problems and an elastic problem.

In the heat conduction problem 1 the infinite plane without the crack and the hole is
loaded by the given stationary temperature field. The accompanied thermostress vector
along R, S and the heat flux normal to R are (¢* + ir') and g; respectively. In order to
fulfill the isolator condition, a heat flux ¢f = —g; along R is prescribed in the problem 2.
The resulting stress vector along R, S is (02 + i72).

Because the crack faces R and the boundary S must be traction free, the elastic
problem 3 is superposed finally. Here the crack faces and S are loaded by the opposite
stresses of the heat conduction problem.

In the following we assume that the heat conduction problem 1 can be solved, so
that the stresses (o' + ir!) along R and S as well as the heat flux q; are known. If R



87

is sufficiently smooth, the heat conduction problem 2 can be described by a Fredholm
integral equation of first kind for the temperature jump distribution a(t) [1]

a(r)e"i[',('r)_"(t)]d‘r . _
~ ) =d(t) = 5 #Re/ — with Rfa,(s)ds =0 . (2)

From its solution a(t) the dipole distribution
t

§(t) = /a(r)e"""(")dr , (3)
: 0
the complex potentials, e.g.

¥(z) = i frddr (4)

¥(2) K z{/ 6(1')d?+ ?6(T)dr]

145 P R(‘r—z)’

and the field quantities are fully determined [1]. Especially the stress vector along R, S
is given by

ol irk = —2 i{z!air_)‘ir ——ZH(t,'r) F%+§£T—3§;]} (5)

1+N1 T

with

t
H(t =1- —210(£)T
(t7) F_1

In the pure elastic problem 3 the displacement discontinuities and displacement de-
rivatives at the boundaries R and S respectively can be represented by a dislocation
distribution g(t). It can be found as the solution of the singular integral equation [4]

o(t) =2 /g(f)dr / H(, )[y(f)df Q—(—T—__)if]

F—1
+ 2mig(t) s+/H(t )[ ('r)dt‘r +‘(]:’___F—2L-?] ) (6)

where
—-(aé + irgn)R - (of + i'rg,,)R on R

= 1 2 = !
we)=rli)+7() {—w%+w&k—@%+hﬁh on § "

is known from the heat conduction problem. Because the crack is closed at its ends, the
side condition
[etit=o0 (8)
R

must be fullfilled.

From g(t) the complex potentials and all field quantities for this problem can be
derived. Especially the stress intensity factors of the whole thermoelastic problem follow
from. the singular parts of g(¢).at the crack tips as shown in the next section.
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3 Boundary element method

The numerical solution of the integral equations (2) and (6) is done by a boundary element
method using linear isoparametric elements (Fig. 2) with a parameter description for each
element as

ti(s) =my + %e""s , —1<s<+41 . (9)

Figure 2: Discretization

The functions a(t) and g(t) along all elements with exception of the crack tip elements
are approximated by linear distributions with the unknown complex coeflicients A;. Along
the crack tip elements 1 and n the 1/4/7 singular behavior is taken into account, so that
e.g. the dislocation distribution is represented by

1- 1
ai(s) = A 28-1—A,+1—;2‘-—'s , l#1L,n,n+N+1
1—3s 1+s
gnin41(8) = An+N+lT + Apye 2 ,
V2 (10)
= A -1|+ A
g1(3) 1 [\/m + 2

gn(3) = Ant+ Ay [ \/1/578 - 1]

Using these formulas the integral equations can be solved numerically and from the sin-
gular parts of the dislocation distribution in the crack tip elements the mode I and mode
II stress intensity factors are determined:
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Kf +iK}, = —2m\/2rdl, 4,
I II - +1 (11)
Ki +iKp = 2m\/2ma); A,

The '+’ and '—' sign denote the right and the left crack tip respectively.

4 Quasistatic crack propagation

The method described in the foregoing section combined with a suitable crack propagation
criterion can be applied to predict crack pathes of thermally loaded cracks. In the following
it is assumed that the left crack tip is fixed while the right tip is allowed to propagate
quasistatically. As propagation criterion the hypothesis of Erdogan and Sih is used. It
states that the crack propagates in the direction a of maximum circumferential stress
(Fig. 3).

Y

Figure 3: Crack propagat'ion at the right crack tip

This leads to the condition

K;*sina+ K;F(3cosa—1)=0 (12)
which can be approximated for K;;* < K;* by
2Kt
a~— K (13)

Having solved the boundary value problem and having calculated the K-factors for
the initial problem, a propagation direction is determined by (12). Extending the crack
into this direction by a sufficiently small length difference the same procedure is carried
out for the new geometry. So step by step the crack path will be determined.

5 Examples

In the following examples the influence of some inhomogeneities or singularities to the
crack path is investigated. Starting from an initially straight crack the path of crack
propagation is determined. For simplicity it is assumed that the fracture thoughness is
zero. As a consequence crack propagation stops if K; becomes zero. The predicted path
of crack propagation is represented by a dashed curve.
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5.1 Heat source
The stress field generated by a heat source in an infinite plane is of logarithmic type [1]:
o ~ lor—1 o, ~ Inr+1. (14)

Herein o, and o, denote the radial and the circumferential stress and = is the distance
from the source. All lenght quantities here and in the following are normalized with the
initial half crack length.
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Figure 4: Cracked plane with a heat source and a hole

Figure 4a shows the crack path for an infinite plane with a heat source in a certain
distance.. If the crack starts.to.propagate, it immediately turns its direction and moves
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then nearly straight forward to infinity. The direction of crack propagation is mainly
caused by the circumferential stress o, because o, > o,.

Figures 4b,c,d illustrate the influence of an additional hole to the crack path. If a small
hole is positioned in the neighborhood of the supposed crack path of the undisturbed
problem, the crack moves around or into the hole (Fig. 4b,c). If the hole is large enought,
the crack changes its first propagation direction strongly and moves directly into the hole
(Fig. 4d).

5.2 Negative heat source
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Figure 5: Cracked plane with a negative heat source and a hole

The;stress-field-generated:by-anegative heat source in an infinite plane is of the same



92

type as (14), but multiplied with —1. As a consequence the behavior of a moving crack
is totally changed, compared with that of a positive source. Figure 5a shows the crack
path in a plane without a hole, which is now mainly influenced by the stronger radial
stresses o,. In the plane with an additional hole, the crack path is influenced more or
less, dependend on the size and the location of the inhomogeneity (Fig. 5b,c,d).

5.3 Center of dilatation

The stress field generated by a positive center of dilatation in the infinite plane is of the

type 1 1
T, ~ —;; , g, ~ ;—2- (15)
For a negative center of dilatation the signs in (15) change.
Figures 6a,b show the pathes of a straight initial crack loaded by a positive or negative
center of dilatation at a certain position. In the first (second) case the direction of crack
propagation is mainly caused by the positive circumferential (radial) stresses.
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Figure 6: Cracked plane loaded by a) a positive center of dilatation
b) a negative center of dilatation

5.4 Single couple

The stress field induced by a single couple in the infinite plane is as follows

o,=0, = 0 ) Tep ~ —73 (16)
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Figures 9a,b show the crack pathes for a single couple acting counterclockwise or clockwise
respectively. The shape of the crack path seems to be similiar as a logarithmic spiral.
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Figure 7: Cracked plane loaded by a single couple
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1 Introduction

Crack extension behaviour in the heat affected zones of welded structures
differs significantly from crack propagation in a homogeneous material. The
crack in a geometrically symmetric precracked specimen under symmetric
loading will deviate from its initial plane, due to changes in the proper-
ties of the material caused by the heat treatment during welding.

Mechanical properties in the heat influenced zone vary so strongly, that

they cannot be identified by normal testing procedures. Using the weld si-
mulation technique, however, where large regions of the specimen undergo a
very similar heat treatment, identification of the properties of the mate-

rial is possible.

A finite element calculation allowing crack extension in arbitrary directi-
ons in elastic-plastic bodies, using an extension of the Griffith crack
growth criterion for elastic plastic materials was used to simulate numeri-
cally the crack extension behaviour in inhomogeneously weld simulated

specimens.

During quasistatic loading of the specimen, stable crack extension occurs,
and some deviation of the crack extension direction from the original crack
plane has to be expected. Surprisingly the crack propagates in that region
where the extension of the plastic zone is large and where more energy is

dissipated compared to crack extension in the other directions.

Good agreement was found between experiment and numerical simulation, gi-
ving some insight in the energy flow near the crack tip of an inhomogeneous

elastic-plastic material.

Accompanying experimental investigations using grating methods with image

processing confirmed the validity of the results of the FE-calculations.
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2 Numerical Simulation of Crack Extension

Numerical simulation of crack growth in elastic-plastic bodies is usually
done by analyzing a symmetric specimen under symmetric loading. In this
case only half of the body has to be modelled, and the plane containing the
crack can be located on the boundary of the model. The basic idea of the
most widely used crack growth techniques is to replace the boundary condi-
tions by the reaction forces and then to release these forces in serveral
steps [1,2].

This procedure can be readily adopted for non-symmetric problems. However,
an automatic re-meshing algorithm has to be implemented to allow crack ex-

tension in an arbitrary direction. Details are given in [3].

To calculate the energy release rate, it was necessary to allow finite
crack steps in arbitrary directions. A special control strategy allowing
testwise opening of all FE-edges adjacent to the crack tip was implemented
into the FE-program. The crack extension path which led to the maximum en-

ergy release rate conld then be chosen for further calculations.
2.1 Energy Flow

Loading a body by forces Fi, or by displacements ui, stresses oxi and

strains ex1 are induced. They give the specific work
£
Ws = J o1 5dery (1)

0
Integrating over the volume of the body, the strain energy

Wges = JWst (2)

v
can be calculated. If a crack is extended at given forces or displacements,
three energy consuming or energy producing processes have to be considered:
1. If the body is loaded by forces Fi the points where the forces act will
be displaced by dui. The released energy is
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dWicad = Fi-dws (3)

If the body is loaded by given displacements this expression vanishes.
2. Changes in stresses and strains will cause some change dWe:1 of the
elastically stored energy. (Notation: If energy is elastically stored,
dWe1 is positive).
3. When forming the new surface or shifting the plastic zone, some energy
dWa1ss will be dissipated. In applications considered in this paper,
energy dissipation by plastic deformation largely exceeds all other

effects. They will therefore be neglected.

The amount of energy available to extend the crack is given by
dWre1 = dWioad - (dWe1 + dWaiss) (4)
Dividing by the crack length da, we arrive at the energy release rate

dWre1 OWre1
da da

2.2 Fracture Criterion

Based on Eqn.(5) a fracture criterion can be given readily:
Crack extension will occur as soon as the energy release rate G reaches a

critical value Ge

G = Ge (6)
The direction of crack extension is given by that direction where G has its

maximum.
2.3 Numerical Investigations of Weldsimulated Specimens
In order to permit a comparsion of experimental and numerical results, a

series of SEN-specimens (150 x 30 x 15 mm3®), machined from 20 MnMoNi 5 5
steel with large, inhomogeneously weldsimulated regions was tested (Fig.1).
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Fiqure 1: SEN-specimen with inhomogeneously weld simulated area ([4]

Microsamples with a diameter of 3 mm were taken from the base material and
from the inhomogeneously weldsimulated regions at different positions to
give the stress-strain relations (Fig.2). Figure 3 shows the finite element

mesh related to the specimens.
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Fiqure 2: Stress-strain relations of different weld simulated samples [4]



Figure 3: Finite element mesh

Figures 4a and 4b show results of epergy flow calculations for a given
crack extension step, assuming plane stress and plane strain conditioms.
The abbreviations at the side of the diagram have the same meaning as in
the section on energy flow. As the experiments were displacement

controlled, the released energy dWre1 equals —dWges.
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2: d¥ rel
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4: dW el

Figqure 4: Energy flow, a) plane stress, b) plane strain
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During quasistatic loading of the specimen stable crack extension occurs,
and some deviation of the crack extension direction from the original crack
plane has to be expected. The crack propagates in that region where the
extension of the plastic zone is large, and where more energy is dissipated

compared to crack extension in other directionms.

Examining the diagrams, the effect of crack deviation into the area of a
larger plastic zone can be explained. As could be expected the upper curve,
representing the dissipated energy, has its maximum at an angle of devia-
tion of about 30°. However, due to the large amount of elastic energy sto-
red in the plastic zone, the maximum of the energy released by elastic un-
loading lies at about 30°, too. In the case of plane stress the angle of
deviation of the maximum energy release rate which was calculated by inter-
polation was found to be 19.4°. This is in good agreement with the experi-

mental result of about 25° at the surface of the specimen.

Under plane strain conditions, which govern the deformatiqn state in the
center of a thick-walled specimen, no‘significant deviation of the crack is
predicted (Fig.4b).

Looking at these results from a more general point of view, it has to be
stated that the material properties at some distance of the crack tip have
a significant influence on the fracture behaviour. This is of special im-
portance for welded structures, where small brittle zones very often are
embedded in large plastic regions. Due to their influence on the energy
flow to the crack tip, these plastic zones have to be taken into account
when the overall load carrying capacity of a welded structure is evaluated.

In many cases this will lead to less conservative results.

For a more detailed examination of crack behaviour and strain- and stress-
fields in cracked specimens, experimental methods are under development
which allow by the use of grating methods and image processing the measure-

ment of these magnitudes over extended areas of the specimen [5].
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3 Grating Methods

The grating methods are based on optical marks, which are combined in a gi-
ven manner to the considered object surface. The relationship between ob-
ject, marks, and their image leads to the geometrical properties of its

surface.

Deformation and strain were measured at a plane specimen with a crack
loaded in bending, according to Fig.l. The whole-field measurement was
performed over a range around the tip of a crack, which, growing from the
ground of the notch, extended vertically towards the longitudinal axis of

the specimen with increasing load.

The grating structure was recorded with a camera (Rollei 6006 Reseaun) for
different steps of loading or deformation, respectively. Fig.5 shows a gra-
ting structure covering the field around the crack. For this case only the

plane deformation was considered.

Figure 5: Grating field around the crack in the deformed state of the
object with 10 lines/mm (section), including reseau marks of the

Ol Ll Zyl_ﬂbl
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4 Image Processing
Calculating strain components from images of a deformed grid requires high
accuracy of the related image processing methods.

The film, in consequence, must be digitized in e.g. 10 by 10 segments with
a conventional CCD-camera to obtain the inherent resolution. The segmenta-
tionris performed using cross marks supplied by a Rollei-Reseau-Camera.
These marks are taken onto film with an absolute precision of about 0.5n
together with the deformed grid. The marks are needed to connect the seg-
ments over the whole area but, moreover, they are used to correct a possi-
ble film deformation due to the developing process.

In order to prevent different sources of errors, the whole image evaluation

proceeds in the following steps:

1. Digitizing a high precision quadratic refence grid and evaluating its
coordinates.

2. Calculation of a related displacement vector correcting the grid
distortion caused by the digitizing system.

3. Calculation and correction of the grating coordiantes in different
deformation states.

4. Smoothing and interpolation of missing coordinates.

5. Calculation of displacement fields with respect to the
undeformed state.

6. Calculating the plane strain field using a large deformation theory and

smoothening.

The coordinates of the deformed grid are determined automatically in a gi-
ven area. The related program needs serveral initial parameters, namely the
pitch of the grating, the thickness and direction of the lines, an index of
a starting point etc., which have to be submitted interactively at the be-
ginning of the evaluation. The program then generates a consistent correla-
tion filter and it determines about 10 to 20 points per second on a Micro-

vax II-computer.

These ravw data are analysed with a smoothing procedure which detects gross

errors, and which interpolates missing points.
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From a reference grid, generally assigned to the undeformed state of the
surface and from a deformed grid, two displacement matrices are determined,
which contain the plastic deformation and a rigid body motion (translation
and rotation). The latter can be caused by a large deformation as well as
by a displacement of the experimental setup and of the film when being di-
gitized.

As a result three matrices are derived, containing the raw values ex, ¢y
and exy of the strain tensor. These values can be smoothened further over 2
by 2 or 3 by 3 meshes when plotting isolines, if too much noise is present.
This, however, reduces the resolution of the strain field.

The described grating method, including image evaluation, was applied to
crack propagation in the SEN-specimen given in Fig.1l, loaded in bending.
Figures 6 and 7 give, as an example, the distribution of the strain compo-
nent &y measured by the whole field method (Fig.6), and calculated by the

finite element program (Fig.7).
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Thermal Cracking in Fibrous Composites
Using the Normal Stress Ratio
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ABSTRACT

The normal stress ratio theory is used o describe crack growth from a notch in a constrained unidircctional graphite-
cpoxy composite plate. The circular plate is fixed around its circumference and subjected to a uniform temperature change.
Stress distributions are obtaincd from a finitc clement analysis for circular holes and oval slots of varying size. The predicted
crack initiation sitc and critical temperature drop to initiate crack growth arc both functions of the notch geometry and fiber

oricnitation (in the case of a slot). Crack growth is predicted to be parallel to the fiber direction in all cascs.

INTRODUCTION

The accurate description of crack growth in fibrous composites is of fundamental importance in understanding the failurc
of these highly orthotropic, nonhomogencous materials. Because of orthotropy, crack growth is not typically sclf-similar.
Because of the hetcrogeneous microstructure, the validity of predictions based on homogeneous material models is uncertain.
That is, the stress variations on the scale of the microstructurc may be important in predicting failure, and these variations arc

cexplicitly cxcluded from a homogeneous matcrial model.

The results of a theorcetical investigation of crack growth in notched unidirectional graphite-cpoxy plates constrained
against displaccment at their boundaries and subjected to a uniform temperature change are prescnted hercin. The composite
has been assumed to be homogencous and orthotropic. The later comparison of these results with experiment will provide a

critical test of the normal stress ratio theory (described below) in the context of biaxial loading.

The normal stress ratio was first proposed by Buczck & Herakovich [1] to model direction of crack growth in composilcs.
It has been used to predict the crack initiation site and the critical load for initiation of a crack [2,3,4]. The thcory is an
cxtension of the maximum normal stress theory (proposed by Erdogan & Sih [51) that accounts for the orthotropic strength of

unidirectional composites.

Finitc clement stress analysis using ANSYS [6] were performed to obtain stress distributions under thermal loading. The

known stresses were then used in the normal stress ratio theory to predict the characteristics of crack growth from the notch.

PROBLEM FORMULATION

A circular plate of a unidircctional composite containing a centercd notch, either a circular hole or an oval slot, is fixed at
its periphery (Fig. 1) and subjected to a quasistatic uniform negative temperature change. The composite is modelied as

homogencous and orthotropic whosc plane stress thermo-elastic constitutive equation can be expressed in the form:
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For the case of off-axis fibers the constitutive equation takes the form:
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The faces of the plate ar stress free. Stress distributions for a variety of notch sizes and fibes/slot orientations were obtaincd

fora graphit&cpoxy plate whosc properties arc given in Table 1.

TABLE 1 - Graphite-Epoxy Properties

E(msi) E y(msi) G 12(msi) viz Xr(ksi) Yr(ksi) 03 (W/°F) o(W/°F)

21.6 1.96 0.83 0.28 210 7.5 -0.43 13.56

i [

3 I

Figure 1. Notched Orthotropic Circular Plate Fixed Along the Edge
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THE NORMAL STRESS RATIO

The normal stress ratio (NSR) is a theory for predicting the critical load, initiation sitc and initial dircction of crack
growth in fibrous composites. The parameters uscd in the theory are defined in Figure 2. The theory is based on the
assumption that a crack will initiate at any point in an orthotropic material where the ratio of normal stress Gge 0 normal

tensile strength Ty at the ¢ plane is unity. Thus, for crack initiation

[
NSR = it =1, 3
7”-“ (
where the normal strength T g is defined
T g = Xrsin?B + Yrcos?p. @

In the above X7 and Yr arc the strength corresponding to failure planes parallel and perpendicular to the fiber dircection,
respectively. The angle B is the angle between the fibers and the plane of intercst. This definition of Ty has been used
because it has not been possible to determine the normal tensile strength experimentally by fracturing a unidirectional
composite along an arbitrary planc. The definition does satisfy the three limiting conditions: a) if the matcrials is isotropic,
Ty is independent of ¢; b) crack growth on a plane perpendicular to the fibers corresponds to Ty = X713 ¢) crack growth
along a planc parallel to the fibers corresponds to Tee = Yr.

NSR = U‘N’/TN’

Top = X7 sin?B + Y1 cos?p

> (o]
77 i \' b
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Figure 2. Normal Stress Ratio Parameters
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RESULTS AND DISCUSSION

Stress distributions were obtaincd with ANSYS finite clement software. The meshes were composed of 8-node
isoparametric quadrilatcral clements, with clements concentraled near the boundary of the central notch. Typical meshes arc
displayed in Fig. 3. Symmetry was cxploited to reduce the domain of the analysis to a quarter disk when the possible,

otherwisc the entire disk was used, resulting in somewhat less mesh refinement in these cases.

In all calculations global cquilibrium was well-satisfied and local equilibrium, as judged against the traction frce
boundary condition at the notch surface, was satisfied to 1 part in several hundred. The calculations were also checked
against analytic solutions when possible (isotropic matcrial with a circular notch, orthotropic material with plate of infinite
cxtent). Stresses at sclected points on the notch surface delivered by the finite clement analysis diffcred from the analytic
solutions by no more than 5%. (The largest discrepancy was for a case in which the analytical solution was also

approximalc.)

Table 2 is a summary of the cases considcered. Material properties for the orthotropic material are as given in Table 1 for
graphile-cpoxy. For the isotropic material the transverse properties of graphitc-epoxy were used. In cach instance the outer
boundary of the circular platc was constraincd against displaccment and a uniform temperature change AT = -100° F was

imposcd.

Figure 3. Typical Finitc Element Meshes for Fixed Plate

For a circular notch in an isotropic material the constant hoop stress is the only nonzero component at the notch surface
duc to symmetry. For the orthotropic matcrial there is a compressive stress in the fiber direct due to the negative cocfficicnt
of thermal cxpansion in that dircction and the negative temperature change. This provides some degree of relaxation of the

tensile stress transverse to the fibers. Fiber orientation is not an issue for the circular notch.

The stresses in the vicinity of a slot are very much a function of the fiber/slot orientation. Figures 4 and 5 show contours
for the tensile stress perpendicular to the fibers for parallel and perpendicular fiber/slot orientations, respectively. Both plots
arc for a/w = 1/16. The maximum stress, shown as the clear region, is relatively low and well away from the notch tip when

the slot is perpendicular to the fibers. This geometry is least susceptible to thermal stress induced fracture.
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Crack growth predictions are obtained by finding the point on the surface of the notch where the normal siress ratio is
largest. Note that the NSR will also be a function or orientation at each position on the notch surface. The critical decrease

in tcmpcerature is obtained by a lincar adjustment of the temperature change such that the maximum NSR=1.0.

Figurc 6 shows the critical decrease in temperature as a function of a/w for parallel and perpendicular fiber/slot
oricntations and for an isotropic matcrial. The trend is opposite to that for mechanical loading in that a larger notch makes
the platc less susceptible to fracture. This is because the presence of a large notch diminishes the stress that the constraint
produces. As suggested above, the perpendicular orientation is significantly morc resistant to cracking than the parallcl

oricntation. The effect of changing the oval slot aspect ratio ¢/a has not been studicd.

TABLE 2 - Cases Analyzed
Notch Materials alw Fiber
Geometry Orientation
Circular Orthotropic
Holes and 1/16,1/8,1/4, 12 0°
Isotropic
Orthotropic
and 1/16,1/8,1/4,1/2 0°, 90°
Slots Isotropic
Orthotropic 1/4 15°,22.5°,45°, 67.5°, 75°

Figure 7 shows the change in the critical decrease in temperature as a function of fiber/slot orientation. The risc to the
relatively large value of AT is steep, indicating that slot orientations differing much from perpendicular to the fibers will be
weak.

The maximum value of the NSR (with respect to orientation of the fracture plane) is plotted as a function of position on
the slot surface for 3 fiber oricntations in Fig. 8. The spread of these curves is an indication of the degree of scatter onc
should expect in obscrvations of the fracture initiation sitc, as a broad curve mcans the NSR is relatively large over a wide

region on the notch surface.
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Figure 5. Transverse Stresses in Slotted Plate, 6 = 90°
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Figure 8. Maximum NSR as a Function of Position on Slot Surface

CONCLUSIONS

Normal stress ratio theory predictions of crack initiation site, (initial) crack propagation direction, and (thermal) initiation
load have been calculated for orthotropic matcrials for a varicty of notch gecometrics. In all cases crack propagation in the
fiber dircction is predicted although the initiation site is a strong function of fiber/slot orientation, as is the tempcrature drop
required to initiate fracture. The initiation site and the initiation load arc also functions of the notch size, though this

dependence is weaker.

The most vigorous test of the normal stress ratio theory would be the experimental verification of the prediction of crack
initiation site and the initiation load because the dramatic variation in these quantitics with fiber/slot oricntation and noich
sizc is casily obscrved. The prediction of the correct propagation dircction is a less vigorous test because it varies little in

unidircctional composites.

Thermal loading could be a powerful. tool for assessing any failure critcrion bascd on a homogencous matcrial model.
The application of mechanical loads equal to the reaction loads in the thermal problem would produce the same failure
predictions. Yet in an actual test these different loads would give risc to different stress states on the scale of the composite
microstructure. If the variation of the stresses on the scale of thc microstructure proves o be important, then no

homogencous matcrial fracture criterion can be satisfactorily applicd in gencral.
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THE EFFECT OF A PLASTIC ZONE AROUND A FIBER ON THE
FRACTURE RESISTANCE OF A FIBER REINFORCED COMPOSITE

Y.Q. Wang and K.P. Herrmann
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Universitat Paderborn, West Germany

ABSTRACT

This study deals with the fracture mechanical investigation of the interaction of
plastic zones around fibers in brittle fiber-ductile matrix composites originated by a

combination of thermal and mechanical loads with existing microcracks.
INTRODUCTION

The damage growth in composite materials is usually caused by existing micro-
cracks[1-3]. The distribution of the microstresses will affect growth of the microcracks
and thus also a change of the macromechanical properties[l—S]. Meantimes, the
behaviour of microcracks in a composite depends significantly on the properties of the
interface between the fibers and the matrix. In this paper, stable growing radial cracks
near to fiber-matrix interfaces(C1 in Fig.1) are studied by means of a unit cell which
consists of a ductile matrix and a brittle fiber and is under cooling and tensile loads.
Ordinary, the coefficient of linear thermal expansion of the fiber is smaller than that
of the matrix for many metal-matrix composites, i.e. Olf< am' In this situation,,
compressive radial stresses occur over the fiber-matrix interface and tensile circum-
ferential stresses and axial stresses within the matrix(cf.Fig.2). Therefore, the radial
longitudinal cracks are especially dangerous concerning the strength of the composite
material. According to investigations performed in the past [9-12], it was found that
there often exists a plastic zone around a fibre(cf.Fig.1) because of the stress concen-
tration in the interface between the fibre and the matrix. Fig.2 shows the distributions
of the circumferential stresses and the axial stresses in the matrix which decrease
rapidly inside of the plastic zone., Therefore, associated with the plastic energy
dissipation at the crack tip, the existence of the plastic zone may improve the fracture
resistance of fibrous composites. It is possible to sustain a stable crack growth or arrest
a crack in the plastic zone, Some experimental and theoretical investigations concerning
the stable crack growth of ductile materials have been performed [13-17]. Shih et al
used for a numerical assessment Paris' tearing modulus Tj = (E/Obz)(dj/da) as a crack

extensiongparameter;pwheregpEpmeanspYoung's modulus and 0, is the flow stress. M.Saka

0
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et al [13] presented the rate of the crack tip energy dissipation during crack extension
TW = (l/R)(E/O'Oz)(de/da) as a fracture parameter, where R is the characteristic radius
of the intense strain region at the growing crack tip, Wp is the plastic wc;rk in the
region. F.E.Brust et al [14-15] used a path-independent integral, labeled T as a
parameter to characterize a stable elastic-plastic crack growth. But for the present
problem, there is a fiber-matrix interface located near to the crack tip and the crack
tip itself may also be placed within the plastic zone around the fiber. It is not easy to
use J, Tj and T* for a detailed crack analysis. Meantimes the energy dissipation in the
plastic zone at the crack tip can not be separated from that in the plastic zone around
the fiber when the two plastic zones contact each other. For these reasons, the stable
crack growth is described here by means of the fracture mechanical quantities of the
energy release rate and the crack tip opening angle. A special finite element program
was developed for the numerial calculation of the energy release rate. The release of
the nodal forces at that node representing the crack tip was carried out in steps. The
profiles of the crack surfaces in initial states and during growing processes are
compared and the plastic wake region along the growing crack is also given in the
paper. Based on these analyses, the effects of the plastic zone around fibres on the

fracture resistance of fibrous composites are discussed.

BASIC FORMULATIONS

1. Constitutive Equations

The analysis is based on the von Mises yield condition associated with the flow

rule. The incremental method is applied in the plastic analysis. The matrix is regarded
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as an elasto-perfectly plastic material. The constitutive equations are:

o] = I [e-€"] for 0o, 0
1
T
= [D -
[Ac] = [Dlgz[Ae- A€’ ] for o >0,
where [D]E is the elastic matrix which is described by a generalized Hooke's law, ET
is the temperature strain, [D]EP is the elasto-plastic matrix. According to the Prandl-

Reuss theory [D]EP reads:

(Dl [ 35/dLelllda/ dleNT (DI,
[d0/ gLoN' DILL 80/ §[oll

where 0~ is the equivalent stress.

Because the unit cell is very long in comparison to the dimensions of its cross
section, the research is based on a generalized plane strain assumption, that means that
€, keeps constant over the cross section.

2. Crack Extension Parameters

2.1 Energy release rate

If a crack extends by a small amou'nt Aia, the stress 0‘y along the new extended
crack surface will be released and there will be an opening displacement v. For
simplicity, this process can be regarded as a continuous process as shown in Fig.3. The
crack tip opens when the stress 0‘y along A i@ is gradually released. Obviously, the
released energy is the volume covered by the o‘y stress surface and the energy release
rate can be expressed as

2 Aia v(0,x)
G = — f dx f(ry(x,v) dv (3)
Aia 0 0
%
X
Oy C N
\‘ \\\ g “\ dla

-
Prad
o

g
=

Fig.3 Energy release




117

®
®

Fig.4 FEM-model for an energy releasing process

The process can be modeled by the FEM-model shown in Fig.4. The
the nodes 1 and 2 are released in steps and the energy release rate G

obtained by means of the following integral:

[ V]
<

G =

1 \p)
( fPl dv, + fp2 dv, )
0

2.2 The crack tip opening angle

®

nodal forces at

can be

(4)

The crack tip opening angle can be regarded as an alternative fracture parameter
describing stable crack growth. In the present analysis,Aia is based on the opening
displacement at the first node at a fixed distance, Aia, behind the current crack tip:

Ai a=15%a

where a is the crack length.

NUMERICAL ANALYSIS OF UNIT CELLS WITH CRACKS

(5)

Fig.5 shows a finite element model for the numerical analysis of a cracked compo-

site unit cell. Because of the symmetry of the cell, only one half of the unit cell was

considered. The associated boundary conditions read:
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Fig.5 The finite element model of a cracked unit cell

% | =0
r=r
m
oy | o =0 for the crack surface (6)
y=
u I =0 for the ligament
y y=0

For the sake of convenience of data preparation, this unit cell was divided into several
substructures. The thick lines in Fig.5 represent the boundaries of the substructures. The
crack length is a and the crack propagates towards the fibre. The largest crack
propagation length is Aa = 1/3 a. The stable crack growth with four different positions
of the crack tip under at least four different thermal loads (AT = -100°K, -200°K,
-300°K, -400°K) was calculated. The geometrical parameters and the material properties

are

. . -6 -1 4 2

Fiber : re = 3mm, oy = 6.75-10 © K ° , 'Vf = 0.21, Ef = 8.4-10° N/mm
. -5 -1 2

Matrix: Tm = 10mm, o, = 2.39-10° K, 'Vm = 0.34, Em = 7.2-104 N/mm

The positions of the crack tip near to a fiber(cf.Fig.5) are given by r, = 3.3, 4.3, 4.7,

h a (cf.Fig.5) is 1.5mm.
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Fig.6 Energy release rate G under different thermal loads

Fig.6 shows the energy release rate for r, = 4,7mm and r, = 3.3mm, respectively.
It can be seen from Fig.6a that the energy release rate increases firstly with increasing
thermal load until AT = -200°K and decreases gradually for higher thermal load. This
phenomenon can be explained by the wake of the plastic zone at the crack tip shown
“in Fig.7 which gives the plastic area in region A (see Fig.5). For AT = -100°K both
plastic zones around the fiber and around the crack tip are small and they don't
contact each other. The circumferential stresses near to the crack tip will increase with
increasing thermal load and then the energy release rate will increase too. But for
AT = -200°K both plastic zones start to contact and get together gradually. Because
the circumferential stresses decrease rapidly in the plastic zone around the fiber
(cf.Fig.2), the stresses near to the crack tip are improved and the energy release rate
will not increase for the higher load. This can also be seen clearly from Fig.8 in which
the dotted lines represent that thermal load at which the two plastic zones contact.
Fig.6b shows energy release rates for a crack tip very near to a fiber where both
plastic zones join when the thermal load is rather small. This picture shows the
situation when the crack penetrates into the fiber from the matrix side and the energy
release rate will decrease very quickly after this penetration.

Fig.9 gives the profiles of a stable crack extension. The crack becomes much
sharper after the onset of growth than it was in the initial state. Therefore, the energy
release rates are always much smaller at the initial crack growth than those for further
stable crack growth.
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Fig. 9 The profiles of a stable crack extension

Fig.10 shows the curves of the crack tip opening angle which have a certain
similarity with the graphs for the energy release rates from Fig.6a.

DISCUSSIONS

The following conclusions can be drawn from the foregoing investigations:

1. The energy release rates at the tips of stable extending cracks near to fibers
take maximum values when the plastic zones around the fibers come in contact with
the crack tip. Then, the existence of a plastic zone around the fiber will prevent that
the energy release rate at the crack tip increases continuously with increasing thermal
load.

2, In the present study, the fracture parameter CTOA shows similar graphs in
comparison with the curves for the energy release rate at the tip of a thermal crack.
3. Similar to the distribution of the circumferential stresses, the axial stresses
decrease rapidly in the plastic zone around the fibers(cf.Fig.2). Therefore, the existence

of a plastic zone may also improve the fracture resistance to penny-shaped cracks
located in unit cells which are submitted to tensile loads. Because the plastic zones
around fibers are mainly caused by thermal loads, it means that the fracture resistance
to penny-shaped cracks of a unit cell under both tensile and thermal loads may be
better than that of a cell under tensile load only. Meantimes, because an acting tensile
load makes the plastic zone of a cell under thermal load larger, the fracture resistance
to radial cracks located inside of unit cells submitted to a combination of thermal and
tensile loads may be better than that of unit cells under thermal load only. A detailed

investigation is presently on the way.
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FAILURE MECHANISMS AND FRACTURE TOUGHNESS OF
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ABSTRACT

The fracture properties of engineering polymers and composites are
strongly affected by two major areas of influence. The first one
covers the microstructural parameters of the materials, whereas the
second one includes the external testing conditions. In this
contribution, it is mainly outlined how area one can determine the
fracture characteristics. An introductory section illustrates the
variety of microstructural details, for example molecular structure
and semicrystalline polymer morphology, and filler related factors,
such as volume fraction of reinforcing fibers, their orientation etc.
In the following part, effects of these parameters on fracture
mechanical properties are discussed. It is distinguished between the
fracture behavior of unfilled engineering polymers, of short €fiber
reinforced, injection molded thermoplastics, and of continuous fiber
composite laminates. In the latter group, special emphasis is given to
the effect of new, high temperature resistant thermoplastic matrices,
for instance PEEK, on the interlaminar fracture energy of the
composites.

INTRODUCTION

If materials in use as structural components are subjected to high
mechanical loadings, besides the demands for high stiffness and
strength very often high values of their fracture toughness are
required. This is not only valid for the very large group of metallic
materials but also for ceramics and engineering polymers as well as
their composites. In all these cases the mechanical properties and the
failure behavior are strongly influenced by the microstructural
parameters of the particular material. In this contribution the
correlation between microstructure and fracture toughness of
engineering polymers and their fiber reinforced composites will be
outlined in more detail.
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MICROSTRUCTURE

ngineering Po ers

With respect to the basic structue of engineering polymers, it must be
distinguished between melt-formable thermoplastics and thermosetting
resins. Because of the chemical crosslinking of their molecules, the
polymers in the latter group are usually stiffer, harder and more
brittle than the thermoplastics. Here, an uncrosslinked state
predominates in which the molecules are either randomly arranged
(amorphous) or partly ordered next to each other. 1In this
semicrystalline condition a morphological structure is built up which
very often consists of fine or coarse spherulites [1]. Another
important parameter is the molecular weight, i.e. a quantity
characterizing the length of the polymer molecules. The 1londger the
molecule chains are, the higher is the molecular weight M, which
often results in a lower degree of crystallinity and an increase in
the toughness of the material.

Additional improvements of the toughness of brittle polymer matrices
can be achieved by finely dispersed, tougher particles of a second
polymer phase. These particles' can cause enlarged =zones of local
deformation near points of enhanced stress concentration, for example
crack tips, thus resulting in a higher amount of energy absorption
prior to final breakdown (Fig. 1) [2].

Under the term "“engineering polymers" all those polymerts are
summarized which have a much higher mechanical property profile than
conventional plastics like PE, PP, PVC or PS. While the latter are
processed in large quantities for minor gquality parts, engineering
polymers such as PA 6.6 and PC are used as technical components for
which high durability and extraordinary mechanical performance are
required. Table 1 lists a variety of new "engineering thermoplastics"
with especially high temperature resistance. In the other group of
"engineering thermosets" used as matrices for high performance
composites, epoxy and polyimide resins are of greatest importance.

Po r mpos i

The addition of harder and ultra-high strength components to a
polymeric matrix leads to a composite. The objective is to combine the
advantageous properties of the single components in a new material.
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Fig. 1: Mechanisms of energy absorption by tough partJ:.cles in a
brittle polymer matrix in front of a propagating crack

Fig. 2: Schematic of the layered structure in injection molded
short fiber reinforced thermoplastic plates
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For instance, reinforced thermoplastics with short glass, carbon or
aramid fibers can still be processed into complicated shapes by a
relatively simple injection molding technique (advantage of
processibility maintained from the thermoplastic matrix). At the same
time the fibers yield enhanced stiffness, strength and dimensional
stability relative to the unreinforced plastic. During the injection
molding process, the fibers are oriented in a special way, and the
degree of fiber orientation as well as the orientation distribution
depend on the flow conditions in the mold and fiber related parameters
such as fiber length and volume fraction. Fundamental studies on the
fracture behavior of these structures are often carried out with
injection molded plates, from which test samples with defined
microstructure can be machined (Fig. 2) [3].

Continuous fiber reinforced polymer systems normally possess a
laminate structure consisting of individual layers of unidirectional
or woven fibers, with different angles between the individual layers
[4]. Fig. 3 illustrates possible, three dimensional lay-ups of such
laminates, being built up of individual lamina of continuous fibers
embedded in a polymer resin matrix [5]. A lot of other arrangements
are possible and can lead to various property profiles in different
loading directions.

FRACT! TOU S
Fracture Toughness of Engineering Polymers

Testing of the fractue toughness of engineering polymers can in
principle be performed following the same guide-lines given for
metallic materials in the American standards ASTM/E/399. However, as
polymers exhibit normally a much higher ductility, not always all the
requirements for the acceptance of the measured stress intensity
factors as real fracture toughness values, Ky (in the sense of a
plane strain condition value) are fulfilled. Therefore, fracture
toughness values of many engineering polymers are only valid for
certain material thicknesses and testing conditions (designated as K,
or KQ values). In these cases the data can only be considered as a
basis of comparison for the effects of certain microstructural
parameters on the toughness profile of these materials.

If the plasticity in the crack-ground is so high that no crack
instability can be achieved the K-concept according to ASTM/E/399
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UNIDIRECTIONAL CROSSPLIED QUASI-ISOTROPIC

Fig. 3: Three-dimensional illustration of possible cross-sections
of continuous fiber/polymer matrix composites:
(a) unidirectional lay up
(b) quasi-isotropic lay up [5]
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Fig. 4: Fracture toughness K, as a function of spherulite diameter
D and vol.% of SiO, particles in isotactic polypropylene
[9]

Trade name Polymer Toughness K 'HPa-m l/2|
c

Ultrsson E PES 1.0 - 1.4
(BASF)

Liquid Crystsl Pol. Lce 4.0 - 4.8
(Celanese)

Victrex 450 G PEEK 5.6 - 7.4
(1c1)

Ryton PPS 1.1 - 1.3
(Phillips)
_Delrin 500 pPoM 3.9 - 4.5
(Du Pont)

Table 2: Ranges of fracture toughness, K, of various
thermoplastics, as measured at room temperature and
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should be avoided completely. Under these circumstances methods of the
plastic fracture mechanics should be applied. Among these methods the
J-integral approach (ASTM/E/813) has got the most frequent attention
in recent years [6-8].

Figure 4 gives an impression on the influence of different
morphological features on the fracture toughness, K., of moderately
isotactic polypropylene [9-11]. The K, value decreases with D and with
the embrittlement of the spherulite boundaries due to different
amounts of powder-like SiO, impurities. Simultaneusly, the fracture
behavior changes from a craze domintated, in-plane ductile fracture to
a brittle interspherulitic fracture. The breakdown mechanisms and the
resulting fracture properties can also be varied in a wide range by
the molecular weight and the content of atactic polypropylene [12,
13].

For tougher polymers such as amorphous polycarbonate (PC) testing of
the toughness profile by the J-integral method 1is often more
appropriate than the application of the K-concept. Figure 5 shows a
corresponding R-curve for this material, and the figure caption
contain the Ji.~(fracture energy)-value derived from these curves.

For general information, a number of fracture toughness values of
numerous newly developed materials is listed in Table 2 [14-17]. It
must be mentioned here, that the given data are average values which
have been obtained at room temperature and moderate crack opening
velocities (1-10 mm/min). Variations of these external parametérs can
result in drastic effects on the fracture toughness of the materials,
which has to be considered in the selection of polymeric materials for
different purposes. Further fracture toughness values of other
polymers can be found in the books by Kausch [18], Kinloch and Young
[19], Williams [20] and Friedrich [21].

Fracture Toughness of Short Fiber Reinforced Engineering Polymers

In this material group, the fracture toughness at a given elastic
modulus of the material depends strongly on the sum of the individual
energy absorbing mechanisms in the damage zone in front of the crack
(Fig. 6): a) fiber fracture, b) fiber/matrix separation, c¢) fiber
pull-out and d) deformation and fracture of the polymer matrix.
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Fig. 5: Crack resistance curve for the determination of a
Jrc-value of polycarbonate (J1o=2.06 kJ/mz) [14]
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Fig. 6: Schematic illustration of the failure mechanisms during
breakdown of short fiber reinforced thermoplastics, and
corresponding equations for the determination of K., the
relationship between fracture toughness and fracture
energy, and the fracture energy, Gg, as the sum of the
partial energy contributions absorbed by the individual

mechanisms
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The relative contribution of the individual mechanisms and the

absolute value of energy absorbed in each of these processes is highly

influenced by different microstructureal factors:

a) fiber length, orientation, volume fraction, type, and distribution
over the cross section,

b) deformation behavior of the polymer matrix at certain external
testing conditons, and

c) the fiber-matrix bond quality.

Figure 7 reflects an impression which tendencies in fracture toughness

as a function of fiber content and crack direction are possible in

different polymer/matrix systems. A real comparison between the

individual composites can, however, not only be performed on the basis

of the fiber volume fraction. For this purpose other, especially fiber

related factors must be considered as well. This can be done by the

introduction of a reinforcing effectiveness term R, as part of a

microstructural efficiency factor, M, which has been introduced and

discussed in detail elsewhere [22].

The relative improvement in the toughness of the composite K., over
the fracture toughness of the unreinforced polymer matrix Kenr @s
plotted against the reinforcing effectiveness term, R, is clearly
demonstrated on Fig. 8. In engineering polymers with high fracture
toughness, for example polyetheretherketone (PEEK) , a fiber
reinforcement has at its best no negative effect on the fracture
toughness of the composite. In case of a poor fiber/matrix bond
quality as for instance valid for PTFE (with very short fiber lengths
in addition) a very clear reduction in the fracture toughness of the
composite (subscript c) relative to the neat matrix (subscript m) must
be expected. In brittle polymer matrices, for example polyphenylene
sulfide (PPS) or polyethylene terephthalate (PET) at -60°C, fibers are
much more effective in improving the fracture toughness than it is the
case for more ductile poiymer matrices (e.g. PET at room temperature).

Fracture of Continuous Fiber Reinforced Polymer Composites

a) Fracture Toughnes F ion of Composites Built- nd its

Individual Components

The application of fracture mechanics concepts by the use of compact
tension (CT)-specimens taken from continuous fiber reinforced
composite systems 1is only then possible, when a dquasi-isotropic
material behavior precdominates. In these cases macroscopically plane
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fractures perpendicular to the applied load axis can be achieved so
that formally fracture toughness values for these materials can be
calculated from the critical load, the initial crack length and the
geometrical correction factor. Table 3 informs about the influence of
various microstructural parameters on the fracture toughness of
composite materials with a quasi-isotropic laminate structure [23].
High strength carbon (C)-fibers result in a higher fracture toughness
than high modulus -C-fibers at a given fiber volume fraction in an
epoxy resin (EP)-matrix. A similar effect on the fracture toughness of
the composite can be expected from an increase in the fiber volume
fraction and/or a quality reduction of the fiber /matrix adhesion. On
the basis of the same laminate built-up, glass fibers (GF) are not as
effective as carbon fibers in enhancing the fracture toughness of an
epoxy matrix composite. For the same type of fiber reinforcement, also
the type of the matrix material can play a dominant role in the
fracture toughness of the composite (compare epoxy and polyimide

(PI)).
b) Interlaminar Fracture Energy

A very special area of weakness in continuous fiber composites opens
up, when cracks start to propagete parallel to the fibers or in the
contact regions between individual lamina (i.e. intra- or interlaminar
fracture). A prevention of this weakness is attempted by the
development of improved fiber/matrix interfaces and new polymer matrix
systems. In the latter case, the replacement of conventional,
relatively brittle epoxy matrices in high performance composiies by
new, high temperature resistant, much tougher thermoplastic matrices
seems to be quite promising [24]. Results of the interlaminar fracture
energy obtained for CF/EP- relative to CF/PEEK-composites are plotted
in Figure 9 as a function of the crack tip-opening displacement rate
[25]. It is well established that the much higher values of CF/PEEK
can be related mainly to the larger zone of plastic deformation of the
PEEK-matrix around neighboring fibers in front of the propagation
crack (Fig. 10) [26]. The same conclusions can be drawn from fracture
surface micrographs of the two different composite systems [27].

The actuality of this interlaminar proble,WMiss‘docnmented,_in_;magy

S Z At IR

of other mlcrostructural parameters many of these papezsfgisg_gisgpss

1nterlam1nar fracture _.energies obtained under ‘other crack-opening

modes (for example mcde I1) and under dlfferent testlng temperatures.
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Fig. 9: Interlaminar fracture enrgy Gy. of unidirectional
CF-EP(AS4) and CF-PEEK (APC) laminates as a function of
the crack tip opening rate [25]
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Fig. 10:Size of the damaged area in front of an interlaminar crack
in fiber composites with a brittle resin (left) and with a
ductile polymer matrix (right) [26]

Materials Fibre volume Critical Stress
fraction Intensity
1/2
KC|HPa-m )
Type 1I Carbon/Epoxy surface 0.64 43.3
Type I Carbon/Epoxy ;:ig:zd 0.64 23.3
Type 1 Carbon/Epoxy fibres 0.4 18.8
Boron/Epoxy 0.66 48.1
Type 1 Carbon/Epoxy 0.4 48.0
(untreated fibre)
0.6 47.8

Type 11 Carbon/Polyimide

15.0
E~glass/Epoxy 0.6

Table 3: Fracture toughness of various, quasi-isotropic polymer
composite laminates [23]
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CONCLUDING REMARKS

Similar to the conditions known for metallic and ceramic materials,
also the fracture behavior and the resulting properties of engineering
polymers and their fiber composites are strongly influenced by their
microstructures. The individual mechanisms which contribute to the
energy absorption during break-down of these materials are, of course,
clearly different from those of other materials due to the very
complex nature of the polymer morphology and the microstructure of
their composites. Nevertheless it is possible at least with polymer
composites to achieve values of fracture toughness which fall into the
range of typical values measured for metals. This can be considered as
a very special advantage, especially when taking into account also the
very low density (p ) of these materials, resulting in a very high
value of the specific fracture toughness (Kio/p)-
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MODELLING OF TOUGHENING AND ITS TEMPERATURE
DEPENDENCY IN WHISKER-REINFORCED CERAMICS
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1. Introduction

In recent years, there has been an increasing interest in the mechanical behavior of
ceramics. Monolithic ceramics, like A1203, may show some toughening through

microcracking, but the answer to their toughening enhancement is by reinforcing them with
rod type of particles.

Reinforced ceramics are designed to be used at severe (aggressive) conditions of high
temperatures and corrosive environment. Since they may also undergo extensive
microcracking, there is a need for a stable reinforcing material like SiC whiskers. Interfacial
properties are very important in connection with the toughening mechanisms present in such
composites. The present work examines the constituent and interfacial properties, and models
the resulting toughening mechanisms in mode-I, plane strain. Consideration of the thermal
residual stresses permits us to include the temperature dependence in the pertinent fracture
analysis. This fracture analysis could be useful for temperatures up to the matrix critical
temperature.

II. Thermomechanical Properties of Whiskers and Matrix

The whiskers (SiC) are in essence minute, needle-shaped crystals (cubic) of high purity.
Statistical analysis showed an average diameter 2a~0.5um, and an average length 2L~10pm.
Their mechanical behavior is linear elastic (assumed isotropic), up to their strength limit.
Microtensile experiments [15] revealed the exceptional high stiffness (Young's modulus

E, =580 GPa, Poisson's ratio , w=0.25) and high strength ”w,utszg GPa. Their density is

py=321 g/cmg, and their thermal expansion coefficient is aw=4.8x10'6/°C. The SiC

whiskers are chemically very stable up to temperatures of 2000°C.
The matrix (A1203) is a non-transforming ceramic. This is a brittle polycrystalline

aggregate with relatively weak grain boundaries. Regarding its mechanical behavior,
intergranular microcracks develop preferably in the direction of the maximum applied
principal tensile;stress[10}: Thesemmicrocracks nucleate at grain junctions (i.e.
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triple points) in conjunction with extrinsic inhomogeneities (i.e. voids or inclusions).
Localized residual stresses form due to thermal expansion anisotropy of the individual grains.
After nucleation, microcracks expand along grain facets, motivated by tensile residual
stresses, and finally are arrested at neighboring junctions. Microcracking is stable because of
the tendency of the residual stresses to alternate between tension and compression on adjacent
facet pairs. The formation of such stress-induced microcracks reduces the elastic modulus of
the material, resulting in a non-linear stress-strain curve (Fig. 1). Since the material is
non-transforming, no permanent strain is expected upon unloading (absence of tranformation
dilatation). A load cycle hysteresis develops due to microcrack development only. Detailed
knowledge of the microcrack nucleation mechanism is not essential for selecting a nucleation
criterion. Briefly, when the grain facet size 1' in the material is less than a critical l(';, stress

induced microcracking initiates at a threshold stress o, . From thermal analysis [10]
1/2
oy = (M2 -1]G, Ae AT o
where G - is the intrinsic shear modulus of the matrix, Aam is the difference of the thermal

coefficients in the grain, and AT is the cooling temperature. As the applied stress o exceeds
0, additional grain facets satisfy the microcracking criterion (1) and the microcrack density d

increases approximately proportional to (a—-ao). Figure 1 shows that the stress-strain response
is linear below o, but thereafter becomes nonlinear since microcracking increases
continuously with stress (typical unmicrocracked values for Al203: E =380 GPa, Vm=0.25).

The nonlinear loading response resembles that of a plastic material, but since the elastic
modulus is reduced by irreversible damage, unloading occurs with a reduced secant modulus.
It is further assumed [8] that microcracking saturates, such that the stress—strain response
exhibits linearity at large strains. The slope of the microcrack saturated material is

Es/Em ~]1- (16/9)ds (2)
where dS is the saturated microcrack density. The saturation part allows the near-tip crack

field to be characterized by a stress intensity factor Kt’ as we will see in the following.
)
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Figure 1: Schematic stress-strain curve for a microcracking ceramic.
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The anisotropic microcrack behavior has been extended for the multi-axial stress state [11].
Rate and deformation type of damage constitutive equations can be suitably selected for our
purposes. In case of proportional stressing [11]

— (O
6= {Cy it A(ay) ninjnknl} o (3)
where 5 is the small strain tensor, %kl is the stress tensor, C(i)jkl is the elastic compliance of
the unmicrocracked material, o) is the maximum principal tensile stress, n, is the direction of
oy, and /\(0’1) is a measure of the cumulative microcracking damage which depends on the
uniaxial stress-strain law. The density (Al203) is p=3.97 g/cm3, the thermal expansion
coefficient is am=8.9x10_6/°C, and the critical temperature is Tczl()OOoC (rate independent

behaviour). Our analysis will be confined to temperatures below T ¢

III. Fabrication, Anisotropy and Residual Stresses

The fabrication of hot—pressed ceramics is described in detail in Ref. [19]. The temperature
is increased up to Tfabr:ISSOOC (>Tc)’ and the pressure (41MPa) is applied along one

direction. As a result cf the fabrication process the whiskers are randomly distributed, laying
on planes normal to the hot—pressed direction, with little clustering.

The 2-D whisker randomness creates anisotropy in the overall elastic moduli (transverse
orthotropy), as well as anisotropy in the fracture toughness [3,4]. In the present, we will
examine the composite fracture toughness for crack planes parallel to the hot—pressing
direction, confining the deformations on planes where the whiskers are randomly distributed.

The effective elastic modulus E can be estimated using the composite cylinder model [6,7].
For Ew/Em>1 and V=V =v=0.25, lengthy computations produced Fig. 2. In that figure we

summarize the normalized elastic composite modulus E/Em as a function of the whisker
volume percentage ¢, parametrically with Ew/ E

Using the composite cylinder model, we estimate the thermal residual stress acting on the
whiskers from the cooling process. The residual stress develops because of a thermal strain
mismatch Q. Within good approximation

Q= (o, - )T p -T,) 4)
Then the whisker/matrix interfacial pressure pI is ( |
I_ "m 1-c¢ . 1-2v cE, + 1 -coE
P—“m— 1_1,Qsﬂ=1‘ 2(1_,,)(1'“ E (5)
W
and under the previous considerations it is always compressive. For temperatures above Tc’

the matrix deforms without imposing any residual stresses on the whiskers. Finally it should
be noted that the composite density p=cpw+(l—c)pm is a decreasing function of the whisker

composition and this fact makes the composite attractively lighter than the matrix.
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Figure 2: Normalized elastic modulus of the composite.

IV. Interfacial Properties

In the composite system under consideration, there is a very weak adhesive bonding at the
matrix/whisker interface (no wetting). Instead, interfacial friction stress is thought to be the
important micromechanical property that controls the overall behavior and for this reason it
is worth measuring the associated friction coefficient h, assuming a static Coulomb type of

friction. A method for measuring the frictional stress is described in Ref [13].

A sharp nano-indenter is applied along the centerline of a long whisker with its axis z
normal to a polished surface of the composite halfspace. A force F causes sliding of the
whisker along the interface over some distance 1. The whisker end slides by a distance u from
the surface. The frictional stress 7 is related to the applied force and the slip, as well as the
thermal residual stress and the friction coefficient, in a non-linear way. In the experiment, the
forces I and the sliding displacement u were recorded continuously during loading, unloading,
and subsequent loading cycles. The tests can be simulated with FEM [12], parametrized by
the friction coefficient B The computed load-displacement curves were compared with the

experimental ones and the best comparison gave the estimate of the friction coefficient
(pc:0.0l).

V. Toughening Mechanisms

A SEM micrograph of the fractured surface is shown in Fig. 3. From that figure and others
we may conclude that the possible acting toughening mechanisms are: matrix microcracking
(shielding), crack-tip deflection, and whisker pullout (see also [17,18]). A schematic of the
acting mechanisms around the crack-tip in mode-1, plane strain conditions is shown in Fig.
4a.



Figure 4: a) Schematic of the toughening mechanisms. b) The path T' for the
calculation of the J-integral.
The matrix microcracking is included directly in the matrix constitutive relation (Eq. (3)).
The asymptotic mode-T stress field is [11]
0
&= [Cijkl + (1/E - 1/Em)ninjnkn1] % (6)

and the asymptotic mode-I stress field is similar to the one given by the linear- elastic
asymptotic solution [11]. The computed microcrack pattern is shown in Fig. 5.
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Figure 5: Computed microcrack pattern.

Crack deflection accounts for the toughening increase due to a local increase of the crack
surface. The toughening ratio D of the applied energy release rate over the energy release rate
due to crack deflection is shown in Fig. 6, as a function of the whisker volume concentration ¢
and aspect ratio L/a. The results were computed using 2-D averaging of the local twist and
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Figure 6: Toughening due to deflection.

Q

We contemplate the following fracture sequence. The matrix fractures at the crack-tip
whereas simultaneously whiskers are pulled out of the matrix behind the tip, impeding the
crack opening and therefore enchancing the composite toughness. We model this behavior by
introducing at the tip region a so called bridging zone [5] (Fig. 7a). The zone is assumed to
consist of "springs" with a prescribed relation between their stress oy, and the crack opening

displacement v, and stems from a micromechanical analysis. The development of the bridging
zone is connected with the R—curve and will not be addressed here. We will confine our
attention to the steady state, small scale bridging. That is to say, the bridge length B is
constant and moves together with the crack-tip in a self-similar way. At the tip, because of
the severe local tensile stress field and remembering that the frictional interface calls for
compression, the whiskers remain in the average intact, emanating as the tip advances.
Simultaneously the whiskers at the tail of the bridging zone are completely pulled out (the
bridging zone is considered to be completely included in the near-tip field). At the vicinity of
the crack faces, only the clamping residual stress pI is essentially acting on the pulled
whiskers (Fig. 7b). Then, their average oV behavior is approximated by a frictional type of

pullout law, neglecting the elastic hysteresis (due to high stiffness), as shown in Fig. 7c.

o=—tacr(l- QLV) (7)
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Figure 7: The pullout. mechanism.
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Figure 8: Transmission electron micrograph of pulled-out whiskers.

VI. Synergism

Denote the asymptotic remote stress field around the crack—tip (Fig. 4) by

K
= f (0 9
%o “em? ofl? ®)
where K is the applied mode-I stress intensity factor that includes the geometry and loading

effects in the usual way it is assumed in small scale analysis. The near-tip stress field will be
of the same form as in Eq.(9), but with K; in place of K . For monotonic loading, FEM

results showed that the stress paths are nearly proportional. In addition, the region of validity
of the near-tip asymptotic was also shown to be substantial, so autonomy with respect to Kt

exists. This is essential to assertain the proposed stress intensity factor fracture criterion [14].
Under the previous considerations we can apply the path independent J-integral [16] for a
path I' as shown in Fig. 4b,

J= {V(W M~ %08Y%%,1 "ﬂ) ds (10)
in order to calculate the relation between K and K;, or equivalently the toughness K /Kt (Kt

is an intrinsic toughness). In Eq. (10), W is the strain energy density (nonlinear due to
damage), u o8 the displacement vector, and 7 o is the unit vector normal to the line I'. Eq.

(10) yields the following energy release rate balance

1— 2
AV

1 v
K2=(1-¢) —p—2-[+-BTEH @ /B -1 DK2+V (11)
m

307

The left hand side of Eq. (11) is the energy release rate due to the far field. The right side of
(11) has two contributions (related with the rule of mixture). The first comes from the matrix
that is microcracking (the extra term in the bracket), and deflecting (D coefficient). The
second contribution (V) comes from the energy dissipated due to pullout (pseudo-ductility).
T d microcracks was neglected, implying a dilute
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The set-up of Eq. (11) is very flexible in the sense that one may simply discard any
individual toughening mechanism where evidence is little or incomplete. Furthermore, the
temperature effect is directly incorporated through V (Eq. (8)). The temperature dependence
of the elastic moduli is very weak for the temperature ranges under consideration.

VII. Some Approximations

It is instructive at this point to reduce the complexity of the previous formulation. We now
consider coinplete linear elastic behavior, but with the bridging mechanism acting. Then,
from the equation of the asymptotically (far field) parabolic crack profile we may estimate the
bridging length B from the displacement condition at the tail of the bridging zone

2

* -

v =4K (B2 /2 L5 (12)

For the A1203/SiC we find B ~ 3 — 6 um, which is consistent with observations. Note that

however small, the bridging zone may contribute to the toughening K /Kt

* o 1)2
K -1/2 . _ o (2B
K= -20) / ,cl_—<—}—K7r12 , 0<C <1/2 (13)

*
The normalized bridging stress distribution a(r/B) /o, acting on the crack faces behind the
crack-tip, can be computed from 12 /
1 2
1-0/d" = (t/B)/2 - ¢, 1 (o/c") log (T/BI g + (f[ dr' (14)

where 0<r/B<1 is the normalized position along the bridging zone starting from the
crack-tip. Note that Eq. (14) is a disguised equation of the crack opening profile: the initial
parabolic profile is closing due to the effect of the whisker pullout opposing the crack
opening. Equation (14) is a Fredholm e%uation of the second kind. It was solved with FEM by
taking its weak form, discretizing o/¢ in r/B, and performing the necessary integrations.
The results for o/o as function of r/B are shown in Fig. 9, parametrized with C,. Note that

Flg 9 can be used to present the near-tip crack opening profile as well (from Eq. (7)).
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Figure 9: The normalized bridging stress distribution.
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VIHI. Examples and Conclusions

As an example, we examined an A]203/ SiC system. Without going into further details, we

were able to insert actual independent data for the variables of our model and compute the
toughness as a function of the whisker composition ¢. The computed and the experimental
results [1] are shown in Fig. 10. For the same material data, the ambient temperature
dependence of toughness was calculated for temperatures up to the matrix critical
temperature. The computed and the experimental results [2] are shown in Fig. 11.
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Figure 11: Toughness of Al203 as a function of ambient temperature.

All the predictions agree very well with the available experimental data. From the
presented examples we can see how knowledge of the key micromechanical parameters (i.e. ¢,
e ds’ etc) and the constituent properties affect the composite toughness. It is worth

mentioning the optimality in toughness with respect to the whisker volume concentration.
Note also the mild decrease of toughness with temperature, indicating the small effect of the
pullout mechanism, compared with the other toughening mechanisms. However, pullout
mechanism may be enhanced, if we could dictate an increased friction and/or aspect ratio.
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1. Introduction

Ceramic materials show several remarkable properties: They can
sustain very high temperatures, they do not corrode easily, even
when subjected to an aggressive chemical environment, and they are
extremely wear-resistant. Thus, they could become an interesting
alternative to metals in the near future and replace these in many
industrial applications like engine parts, roller bearings or cutting
tools. Moreover, most ceramics are biocompatible and, indeed, modern
surgery uses them already as bone transplants /1/.

Unfortunately, the fracture resistance of monolithic engineering
ceramics (i.e. parts made completely of e.g. Mullite, Cordierite or AlyO3)
is usually very small, when compared to other materials: Kjc (steel) ~
40-60 MPam!/2, Kjc (cast iron) ~ 10-15 MPam!/2, Kjc (Al203) ~ 2-4
MPam!/2, It goes without saying, that such a low fracture toughness is
clearly not sufficient for the above mentioned technical purposes.

However, the Kjc of ceramic composites may be much higher than the
toughness of its individual components. Two composite-systems seem
to be especially promising: Ceramics which are toughened by addition
of Zirconia (ZrOj) particles, and ceramics which are reinforced by
addition of SiC-whiskers and fibers. The following experimental data
may serve as an orientation: Kjc (Alp03 + ZrOj) ~ 6-20 MPaml1/2, K¢
(Mullite + SiC-whisker) ~ 6-9 MPam!/?2 (/2-4/). In the following
chapter we shall briefly explain several micromechanisms which are
responsible for the resulting increase in toughness of these
composites.

¥ Visiting Scholar, Stanford University;January 1990 - Junc 1990
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2. Toughening Mechanisms in Ceramic Composites

a) Stress Induced Transformation Toughening: If bulk Zirconia is
cooled down to room temperature its crystal lattice will transform
abruptly at 1200 °C from a tetragonal into a monoclinic configuration.
In fact, this phase transition leads macroscopically to an increase in
volume of about 3%. Thus, if Zirconia particles (pm-size) are
embedded in a ceramic matrix, a constraining pressure will be exerted
whenever they start to transform so that, even at room temperature,
Zirconia inclusions can be stabilized in their tetragonal variant.

If, however, a crack in the neighborhood of the particles is made to
extend under load, the matrix constraint will be released due to the
enormous stress-concentrations around the crack tip, and the
particles switch into monoclinic symmetry. Because of the volume
expansion a compressive process zone will now be generated around
the crack. Thus, extra work would be required to move the crack
through the ceramic accounting for the increase in toughness and
hence strength [3/.

b) Crack shielding: If a crack in an Mullite or Cordierite matrix runs
towards a SiC-whisker or fiber, its tip will be "shielded and blunted"”,
since the SiC-component is wusually much stiffer than its
surroundings: E(Cordierite)/E(SiC) ~ 1/3. This in turn will
macroscopically lead to an increase in Kjc.

c¢) Debonding: Due to the enormous stress concentrations at crack
tips it may happen that a crack separates on its way through a
ceramic whiskers or fibers from the surrounding matrix. And this, of
course, goes to the expense of its own energy.

d) Pullout: For similar reasons as in c¢) crack propagation may result
in the pullout of fibers and whiskers, which again reduces the energy
of the cracks and will finally lead to an increase in toughness.

We will now present several simple models which allow a quantitative
understanding of the above mentioned energy-dissipative
micromechanisms a)-c), within the framework of linear elasticity. For
a discussion of the fiber-pullout the reader is referred to the article
“Static and Dynamic Pullout of an Elastic Rod from a Rigid Wall" by L
Miiller et al in this volume.
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3. Calculation of the Increase in Toughness A Kjc.

We start with Griffith's fracture criterion which for the crack shown
in Fig.1 reads:

Kele = Ky, [ matrix) @3.1)
m- 2r0, ﬂg

@ * e

-a

‘
Ue

Fig. 1: Griffith crack surrounded by monoclinic Zirconia and SiC-
whiskers

If the crack were not surrounded by transformed Zirconia particles or
SiC whiskers the K| would simply be given by:

K. - &/ (3.2)

But due to the presence of the particles and whiskers this expression
has to be changed into:

A - FMY(...) (33)

where the correction function Y(....) depends in a complicated manner
upon the considered geometry , the different elastic constants of the
matrix and the inclusions, and upon the volume expansion of the ZrOj;.

OrwinwotherwwordsianY(m)wreflects the strength of transformation
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toughening as well as of crack shielding. In order to make this more
explicit we combine (3.1-3.3) and get for the critical external stress &

in the monolithic ceramic:
K., (matrix)
6, = 2l (3.4)

i

and in the composite material:

K. (matrix)

6, = e V) (3.5)

Thus, if the inverse of the correction function Y-I(...) is greater than 1,
a higher stress value must be applied in order to destabilize the
system. This is exactly what we expect if the transformed Zirconia
particles are above or below the flanks of the crack, so that they
compress them, or if the crack is in front of a stiff SiC-whisker.
However, if the crack is in front of a transformed ZrO» inclusion, its
flanks will be opened due to the volume expansion of the Zirconia.
Thus, it will be destabilized and run into the particle. In this case
Y -1(...) should become smaller than 1 and a smaller load €. is
necessary for destabilization. Note, that if the crack has run into the
transformed particle its flanks will be again under compression. So
finally Y-1(...) will always be greater than 1 and we may calculate the
increase in toughness according to:

Hodnatrir 53 ) 2’ < K It 971 09

4. Methods for the Calculation of the Correction Function Y(...)

In order to evaluate (3.6) it is obviously necessary to know the
correction function Y(...). Its determination is generally a non-trivial
problem of linear elasticity. In the following we present two methods
for its calculation and several corresponding numerical results.
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4.1 The Integral Equation Technique
4.1.1 Analysis

We consider the following two situations (see Fig.2): An arbitrarily
oriented Griffith crack interacting with a transformed ZrOj - inclusion

and a pressurized Griffith crack perpendicular to a SiC-whisker.

Fig. 2: Crack geometries under consideration

Erdogan and al /5,6/ have shown how to calculate Y(...) in such cases.
The idea is to simulate the crack by a continuous array of dislocations,
the distribution of which will be determined from the fact that the
-flanks of the crack must be free of forces. This consideration leads to
systems of Cauchy integral equations which, in general, must be
solved numerically. E.g. one finds for the case of an arbitrarily
oriented matrix crack together with a transformed Zirconia particle:

¢,
Jse {_"_ﬁ fdf} o [k hlglild

dt,

t‘ ¢+
' fk,z/z‘,z‘,}//{,)tlz‘, =“-7%{::—4)-R/f/ (4.1)

f (Y "“ fk,,(ff)g/f)a/{ '

ff/fl,——vft tf | (L)1)l =-T82% )
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where g(ty) and f(ty) denote the components of the Burger's vector
for the unknown distribution of dislocations. kjj are extremely

complicated integral kernels whose explicit form can be found e.g. in
/5,7/. pi designates the normal and tangential forces of a virtual crack

in the undamaged material (see /7/), i.e. pj takes account of the
external stresses as well as of the internal forces which are due to the
phase transformation.

Having solved (4.1) the stress intensity or in other words the
correction function will be calculated as follows, e.g.:

9tt) =wlt) GlE) , £1¢) = w i) F/f/, wlt] = (¢-4, NN

4.2)

/{/H=-“K M, (cG/z‘/ L Fit)

4.1.2. Results

Fig. 3. shows the correction functions Y(...) for cracks which interact
with transformed Zirconia particles in an Alumina matrix or with stiff
SiC-whiskers. The plots are the result of a numerical treatment of the
above mentioned integral equations. For details the reader is referred
to /7-9/. Transformation toughening and crack shielding are both
clearly visible: If the crack is above or in the ZrOj-particle the
correction function Y(...) is smaller than 1. The same holds for a crack
in a matrix which is much softer than the embedded SiC-whisker.

It should be noted that by means of the integral equation technique it
is not only possible to calculate the stress-intensities but the stresses
as well. This has been done in /8/ in order to determine the forces
acting perpendicularly and tangentially on a SiC whisker as function of
the stiffness of the surrounding matrix. These results can help to
understand the inset of the debonding of fibers.

4.2 The Laurent Series Approach

4.2.1 Analysis

The method of integral equations allowed to consider the interaction of
one transformed particle with a crack. In order to study the influence
of several particles we shall idealize them and treat them as
pressurized holes wusing Isida's Laurent series expansion technique
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/10/. Although there is some influence from the difference between
the elastic constants of the Zirconia and the surrounding Alumina,
this idealization seems to be justified, since the influence is neglegibly
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Fig. 3: Correction functions calculated with the integral equation
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small when compared to the phase transition on the correction
function /7/.

Isida starts with the Muskhelishvili-Kolosov equations (where d has
been introduced as a suitable reference length):

bue vy * Tre @y "6 Q')
fxx - t.‘l.'l “2[ [xy =-2¢ {s' ¢.(2) + Y’"f?}j (43)
2plu, ~iu) = 6d {35(5) -3¢'(z)- ¥'2) }
and expands the Goursat functions ¢ and ¥ into Laurent series:
2 ~tne ) ned
b« 2 {h2" ol 2™/
me 4.4)

g - it nrd
Yiz) = =D, nz +£ 2,8 +Z K2

nso
The appearing coefficients are then determined from the boundary
conditions (for the case of an extension of Isida's equations to the case
of pressurized holes see /11/) and finally the correction function is
calculated using Sih's formula: '

1 o4
Ke-ily = 26(2rd)" z//mu/ (2-ala)” $'e)} 45)
* &4d

4.2.2. Results

Fig. 4 shows some typical results for the correction function, which
are taken from /11/. One clearly detects that two particles are more
effective in stabilizing the crack, provided that they are properly
distributed above and under its tips. A statistical evaluation shows
that in the case of two particles the resulting local toughness Kjc
(calculated acc. to (3.6)) can become 7 MPam!/2 whereas just as before
in the case of the integral equation technique one particle leads to an
average Kjc in the order of 5 MPam!/2,

5. Conclusion and Outlook
The survey presented in the present paper has shown that it is

nowadays possible to investigate and predict the mechanical
properties of "modern engineering ceramics by means of adequate
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Fig. 4: Correction functions for transformation toughened Alumina
calculated by means of the Laurent series expansion technique

numerical techniques. It can be expected that these techniques will be
the basis of computer expert systems for ceramic materials in the
near future.
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Abstract

Fatigue of shape memory alloys can be caused by thermal cycling through the range of martensitic
transformation or by mechanical cycling. The effects differ depending on the temperature range:
stable high temperature phase (austenite), or low temperature phase (martensite), or the range
where stress induced transformation can take place. A distinction is made between mechanical fa-
tigue and shape—memory fatigue, i.e. hardening and crack formation, or a shift in transformation
temperatures and loss of memory. The microstructural origin of all phenomena is discussed.

Introduction

Shape memory alloys show a number of properties which are qualitatively different from those of
all other solids. This is also true for the response to thermal and/or mechanical cycling. The mi-
crostructural aspects of fracture of normal alloys have recently been treated in a systematic way.V
The number of papers on shape memory alloys was not large in the past.2-5) Presently, there is a
systematic effort in this field especially on CuZn— and FeMn-base alloys.6-11)

Shape memory in alloys is connected with a crystallographic transformation of a high temperature
phase § (austenite) into martensite Ve This implies that under certain conditions of stress ¢ or
temperature T both phases can coexist, while a mono—phase structure of f exists at T > Ay, and of
aat T M. Figure 1a presents the thermo—dynamic background for this phase transformation
and 1b explains the designations of the various temperatures, which are encountered during a
transformation cycle. The martensitic transformation is usually of first order and heterogeneously
nucleated (structural defects, surface). In the temperature-range AT = TO - MS second order
phenomena may occur, which are known as pre—martensitic (spinodal shear waves).12)

Figure 2 compares the normal stress g, strain ¢, temperature T behavior of materials with the
three'particularreffectsiof shapermemory alloys. The occurrence of the two—way effect requires
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Figure 1b: Course of martensitic transforma-
tion and reverse transformation of f—CuZn
from X-ray intensities, (200)—ﬂ1—reﬂections,

60.80 wt.—% Cu). M — martensite start; M —
martensite finish; As — austenite start; Af -
austenite finish.

"training" of the material. This implies the introduction of internal stresses or nuclei which favour

certain crystallographic shear systems for the § - v

transformation.

The limit of the bulk shape change is determined by this crystallographic shear. The memory

is due to the fact that the reverse transformation o

- f# takes the same path as the martensitic

one. This phase usually shows a higher degree of microstructural disorder: i. e. a single—crystal or
grain of § is transformed into a poly—crystal of - This, in turn, permits the quasi—plastic defor-
mation during the one—way treatment (Fig. 2 and 3).
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H=-a

a-=f

B

-

tly transformed

Figure 2: Different t of
thermo—mechanical ypesbe_
havior of shape memory al-
loys (SMA) 1n stress (Yr—)—
—strain  (€)-temperature
éT)—diagram. Generalized
atigue implies repeated

g of any of these var-
iables. a) normal behavior;
b) pseudo—elasticity (o #
const); c) two-way effect
ET # const); d) one-way ef-
ect (alternating variable o
and T).

Figure 3: Austenite/martensite microstructure in
eNiAl-alloys. Internal twinn-
ing inside the martensitic phase ay;, TEM
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II  Variables and boundary conditions

Thermal cycling normally comprehends the temperature range between Agand Mg AT > | A¢
-Mg|. There is a variety of possibilities for mechanical cycling. Conventional fatigue takes place in
the stable § phase: T > A The four other cases may be obtained from figure 1: strain or stress
induced g - aM—-transformation above Ms’ ap+ aMﬂ)hase mixture between Ms and Mt’ and fa-
tigue of the completely transformed martensite o i.e. in the pseudoplastic state.

There are different boundary conditions for stresses and strains.

L o =0for §- oy and oy 0 represents a free motion during thermal cycling. The additional
requirement is ¢ = max for the two-way effect.

2. o#0for - ap OF in the o) —state, but ¢ = 0 for o [ is a requirement for the one way
effect.

3. 0#0forf~ ap 38 well as oy~  for the superelasticity.

4. ¢ = 0 represents a completely constrained system in which stresses are maximized: for the two
way effect this implies that a stress may be created during cooling, which is relaxed during
heating.

5. The one-way effect requires ¢ # 0 for formation or deformation of the martensitic state. Re-
transformation o B will create a stress for ¢ = 0.

6. There are many conditions in shape memory technology for which ¢ # 0, ¢ # 0 is valid. An ex-~
ample is robot grippers which require motion and exertion of a force by the two—way effect.
All of these conditions can be associated with fatigue phenomena, if mechanical and/or ther-

mal cycles are repeatedly applied (Fig. 4).

Table 1:  Fatigue loading conditions of shape memory alloys

T range T>A=T, A>T >M| M >T >M[ T <M,
mode stable § pre— transform— martensite
of martensitic ing 8
loading
mechanical fatigue in pseudo— stress in— fatigue in

austenite elastic duced in martensite
f + o mixture
thermal cycling in the range of AT = T{ =Ty
Ty >As 5 T1 <M¢
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Figure 4: a) Thermal cycling, temperature
amplitude, AT > (Af - Ms); b) mechanical

T . . .
oder @=const. =0 cycling, stress amplitude, Ty schematic.
e=zconst. =
A~ ———————
t
Mifpp———— — Valubuus a)
(X2
L €40
TZ Ag=const.
. |
00— n
b)

III  Experimental observations

Figure 5 provides evidence for the complexity of fatigue in shape memory alloys. Purely ther-
mal cycling (¢ = 0) leads to considerable work hardening of f—CuZn. Its transformation is not as-
sociated with a volume change (Av o 0). Alloys with a volume change (FeMnX: Av qe® = 0.01;
FeNiX: Av o™t 0.03) show even more hardening. Minimum hardening is observed for NiTi—
base alloys with a high yield stress R_. This specifies the prerequisite for minimum thermal hard-
ening: Av o= min, R_ = max, in ad?iition t0 74, = max, i. e. a maximum crystallographic shear
strain, for all shape memory alloys. A consequence of the accumulation of the defects which pro-
duce the hardening is a characteristic change in the stress—strain—curve of the superelastic state
(Fig. 5b). There is a reduction of elastic strain as well as of hysteresis. Repetition of the one-way
effect may cause its reduction. This is especially true for the Fe-base alloys, with their transfor-
mation volume change.

Mechanical fatigue depends on the temperature level. In summary: crack formation and
growth is rapid in the f-state unless grain boundaries are folded and desegregated by a hot—
rolling treatment. In the martensitic state cracks form easily, but their propagation is sluggish and
consequently life not anomalously short (Fig. 6).9
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Figure 5: Effects of cycling on properties
of f—CuZn (60.5 %1, 39.5 anvevt.%
M, = —70)

a) Work hardening, thermal cycling

b) Increase of yield stress, hysteresis,
and pseudo-elastic behavior, after
thermal cycling.

Finally, not only mechanical properties do fatigue but also the temperatures and course of the
transformation (Fig. 1 and 7). Mechanical cycling of 3 lowers the transformation temperatures and

raises the hysteresis.

IV Microscopic Aspects

Fatigue is due to irreversible structural changes which accumulate during repeated cycling,
Special effects in SMA are due to motion of transformation interfaces (a)/f) and the microstruc-
tural disorder in martensite (Fig. 3). In non—transforming alloys dislocations, dislocation group-
ings, and persistent band structures are the defects which form due to periodic external or thermal
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Figure 6a: Stages of development of mechan-
ical failure in a schematic o—N—curve

P8
50=15 MPa

Stress [MPa]

401 ——._ “Cycle 1
304 “Cycle 857

0 L] T
0,5 1

Deformation € [%]

Figure 6b: Effect of mechanical cycles on the shape or the pseudoe-
lastic hysteresis loops (alloy as Fig. 7b)
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Figure 7b: Thermal cycling raises tempera-
tures of martensite formation and lowers that
for the start of reversion (72.4 Cu, 24.3 Zn,
3.3 Al I\/IS = + 10)

stress. These are enhanced in SMA by incompatibilities associated with shear transformation and
amplified further by changes in volume. In all polycrystals the grain boundaries and their close en-
vironments are sensitive areas for fatigue effects.

Additional structural changes in SMA are:

1. local zones of disorder in the f—phase, due to local motion of dislocations, starting with the
formation of anti—phase~domain boundaries,
2. residual martensite: disorder and lattice defects stabilize this phase against reverse

transformation,

3. newly formed interfaces: oy /f—phase boundaries, twin— and varient boundaries inside

martensite.

Figure 8 provides evidence for some of the structural changes. Dislocations found in the f—
phase may be of particular nature (i. e. Burgers vector) if they had formed in martensite and re-
transformed. Intramartensitic sliding along twin boundaries and faults seems to be easy and the
cause for characteristic tongue shaped extrusions. Martensite phase— and variant—boundaries limit
the extend of this slip but act as sites for the initiation of fatigue cracks. Other sites for crack
initiation are Jf-grain boundaries or intersections of localized bands of transcrystalline strain as
in non-SMA-alloys. The observed new mechanism explain the bulk effects. Crack formation is
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Figure 8a: Examples for microstructural Figure 8b: Extrusions formed during
changes during fatigue of Cu—base SMA. mechanical fatigue in the pseudoelastic
Dislocations left in the pJ—phase, TEM state (alloy as Fig. 7b)

(alloy as Fig. 5a)

. \\\\ \‘;"‘-‘r’ i [l i

Figure 8c: Cracked a*a —boundaries in the
completely transformed condition inducing
multirle crack growth (70.6 Cu, 26.8 Zn,
3.6 AL M, = +120°C)

extremely frequent in martensite and a rare event in the (—phase. This effect has a favourable
effect on bulk fatigue life of the alloy in martensitic conditions, which is not plausible on the first
sight, but explainable by the observations of multiple crack growth.

oL fyl_llsl
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Figure 9a: Fractal fracture surface of
embrittled and fatigued martensitic alloys

Figure 9b: Formation of fractal fracture,
schematic

V  Fractal and non—fractal Fracture
The final stage of fatigue life is rupture (Fig. 9). If rupture occurs as the final stage of a fa-

tlgue test or tensile test a very rugged fracture surface is found for partially or completely marten-
tate is intercrystalline, on {100}—cleavage planes, or {110}-slip

ovides evidence for a fractal structure of the fracture
5 i &
" "




166

of martensite. Fracture in the f—phase is non—fractal. Especially intercrystalline fracture is not at
all self-similar, while multiple cracking takes place in martensite especially after fatigue loading
or after embrittlement of the intra—martensitic interfaces.1?) Induction of multiple crack branch-
ing may have a favourable effect on final fracture toughness. On the other hand it has to be noted
that the subcritical changes in microstructure cannot be ignored because they will strongly affect
the shape memory properties, i. e, amount of trained—in two way memory, transformation temper-
atures, amount of transformation, course of transformation.

VI  Summary and conclusion

The origin of fatigue in shape memory alloys are structural changes which can be induced
either by external cyclic loads or temperature cycling through the transfomation range between Ty
> Ag and T, < Mg Transformation shears and volume changes induce stresses in addition to
those known from non—SMA-alloys. As a consequence of the martensitic transformation defects
other than normal dislocations and grain boundaries play a role in shape memory alloys:

a) dislocations that have undergone a phase transformation,
b) zones of disorder and antiphase domain boundaries in f,
c) residual martensite in f,

d) a-f interfaces,

¢) martensite plate boundaries, twin boundaries inside o

There are two aspects of fatigue which are related to these structural defects:
1. Mechanical fatigue:

Cyclic hardening, formation of surface phenomena, (tongue-like extrusions—intrusions), crack

initiation, crack propagation, final rupture. The martensitic structure is capable to multiple

crack formation. Transforming § may produce retarded crack growth by transformation local-
ized at the crack tip. These effects explain the observation that fatigue life of the transforming
alloys is not worse as compared to normal non—transforming ones.

2. Shape memory fatigue:

These are the changes in the transformation behavior including the extend of the one—way and

two—way effects. A dislocation forest in § will retard the transformation i. e. lower M, and

raise the hysteresis. Local dislocation groupings, as sites of internal stresses will favour the g -

o transformation, i. e. raise Ms' The same is true for small zones of residual martensite and

disordered austenite. These structures form during thermal cycling and will raise the start of

martensitic transformation.

The structural features listed as a)—e) are intentionally introduced during training. They are
then responsible for the amount of the two—way effect. Mechanical fatigue is always related to
shape memory fatigue in a complex way. Both can be understood by a subtle analysis of the mi-
crostructural details.
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Matrix Cracking of Cross-ply Laminates
under T-fatigue and Thermal Loading

H. Eggers, H.C. Goetting, W. Hartung, H. Twardy
Institut fiir Strukturmechanik, DLR-Braunschweig
Flughafen, D-3300 Braunschweig

Abstract: The present study concentrates on resin cracks in UD-layers of cross-ply
laminates. The material T300 / 914C was tested mainly under T-fatigue, thermal
cycling at space conditions and overheating, in order to analyse the damage
mechanisms for resin layer cracks and their causes.

1. Introduction

Because of the complicated texture and structure of laminates, different kinds of
damage appear simultaneously, inducing and magnifying each other. Most severe is
the synergism between delaminations and layer cracking, especially for T-C-fatigue.
The closely spaced matrix cracks damage the interfaces between the layers and
accelerate the delamination growth. Generally, the local buckling of the separated
sublaminate initiate the failure of the component. An indicator for the mentioned
synergism is the large difference between the energy release rate (ERR) at the
delamination front for cracked and uncracked layers, Figure 1.

As a first step the matrix cracking of the imbedded layers will be studied separately.
The tests, limited to cross-ply laminates, are accomplished for T-fatigue, thermal
cycling under space conditions and overheating, which may happen accidently,
Table 1.

Test Measured
Malerial Slack condilions Tesl parameler values
T300/914C | [0./90./0,] T-faligue n=12 m= 1234 Crack
R = 0.1 0y = 1050 — 1440 N/mm’ distance
N = 5000 - 4 000 000 oS Ej, Gy
7300/ 914C | [0./90,,/0,] Thermal n=12 m= 1234 Crack
cycling -160°C < T < 100 °C dislance
N < 2000
Dilferent [ +45]5 Thermal -160°C < T< 100°C Crack
materials cycling N < 3500 distance
Vacuum o-e-diagram.
N, -almosphere Tun
Cycle time Ex
T300 / 914C [ £45]) Overheating T = 180, 230, 260 °C Mass' loss
Ny-atmosphere a-¢-diagram.
Ty
Ex

Table 4. iest.configurations for cross-ply laminates
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2. T-Fatigue loading

In MD-laminates the UD-layers crack in parallel to the fibers under tension stresses.
The crack density increases with the number of load cycles, until a saturated state,
the characteristic damage state (CDS), is achieved, Figure 2. In a a-log N-scale the
crack distances a decrease linearly with the number of load cycles N, until the mean
crack distance for the CDS is reached. In Figure 3 the measured crack distances are
plotted for a [ 0; /90, / 0, -laminate. For each 90°-layer removed from the stack the
crack distances decrease by Aa(N) &~ 0.15 mm. For a < acps the slope of the lines
decrease with the load level and with the hrumber of layers. In order to find the limit
values for extremely stiff top layers tests are in preparation with [ 0,/ 90,/ 0,]- and
[0,/90,/0,)-stacks. For a stack of <4 UD-layers the CDS depends solely on the
thickness of the UD-stack and is independent from the load level and the stiffnesses
of adjacent sublaminates.

| | -
IR BN
: ||| e [0:/90s]s
|
E 11 M N“ HW N wowmn  Flgure 2.
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| ARYIp A laminates after T-fatigue loading
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o

2 o0 x 0.80-0u

10° 23 5 100 23 5 15 23 5 106 2.3 5 O  0.90.au

No. of load cycles N
Figure 3. Crack distances versus load cycles
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For various load cycles the frequencies of the crack distances can be described by
a two-parametric Weibull-distribution, which changes gradually to a symmetric
GauB-distribution for the CDS, Figure 4. It is typical for the saturated state, that the
extreme crack distance is about twice as large as the mean crack distance measured

most frequent.

2.5
af=0.55mm I 1

N =100000 Material T300/ 914C
Stack [02/902/0,]

a®=0.64mm
N =50000
/
Figure 4.

a®=0.85mm
N =20000 Weibull-frequency versus crack
A\ distances for different load cycles

0.5 1.0 1.5 20 mm 2.5
Crack distancea [ mm ]

P
\

=
o

[
n

Frequency distribution function f(a)

(=}
o

In order to study the crack pattern more precisely, adjacent crack distances a,, a,
are marked by a dot in a a;-a,-plane, which is subdivided in squares of 0.05 mm
pixelsize. In each square the dots are summed and lines of equal frequencies are
plotted for the cluster sums, Figure 5. If a third crack is forming between two existing
cracks, the sum of a, + a, is constant. This holds for the dashed line in Figure 5,
along which the frequencies follow a GauB distribution. For small crack distances,
where the stresses close to both crack surfaces are interdependent, a new crack is
likely to form in the middle (a, = a,). Moreover, crack distances below 0.35 mm
will not subdivid any more and crack distances beiow 0.15 mm will not be generated.

-
(%,
1

Stack :[0,/90,/0,]
=12, m=1..4
: 1050 ... 1120 N/mm

Crack distance a; [ mm ]

5 Oos-plies
No. of cycles 1> 108
No. of specimens : 8
A +a, = const No. of cracks : 1467
0. . St e 7 cons: max F / Pixel  :31
0. 5 1. 1.5 a (max F) : 0.45 mm

Crack distance a, [ mm]

Figure 5. Envelope lines for the frequencies of adjacent crack distances

The results depicted in Figure 5 verify, that in cross-ply laminates layer cracks will
be initiated predominantly by the extreme inplane tensile stresses. Figure 6 depicts
these stresses in the middlerofrar90°-layer block for various crack distances. The
tensile stresses close to the iinterface are nearly constant between adjacent cracks.



171

Even though these stresses overstep the ultimate strength of oy, = 50 N/mm? signifi-
ciantly, a layer crack generally does not form. Voids, which have the potential to
progress under high stresses, cannot open freely in the vicinity of the 0°-layers and
therefore will not grow. This conclusion is supported by the decrease of ERR, when
a crack starting in the middle of a 90°-layer steps close to the interface, Figure 6.
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Figure 6. Tensile stresses in the mid-cross-section between two cracks
and ERR after crack initiation at the midpoint

The cracks will probably be initiated in the inner zone of the 90°-layers. Once a crack
is formed there, it will accelerate due to the stress increase towards the interface.
This assumption is supported by the fact that partly cracked layers were never
observed by tests.

When a crack reaches the interface, the sudden contraction of the crack sur%ace
causes extremely high peeling stresses at the interface. They dismantle and break
some fibers and generate microdelaminations, Figure 7.

The described results give an insight into the generation of layer cracks. Tests are
in preparation to measure the stiffness and strength of damaged 90°-layers strained
by interlaminar stress components. Hopefully, these tests combined with an analysis
of the inplane stresses can be used to determine damage conditions for layer
cracking.

Fﬂ;rer cracks o°

1

i o
™1 r
—t i i D=

Figure 7. SEM-picture of a layer crack
with microdelaminations
(Measured by H.J. Seifert)
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Summarized results for T-fatigue tests on T300 /914C material:

Crack distances decrease linearily in a a-log N-diagramme

CDS depends on the layer thickness and not on the load level

Crack distances <0.15 mm were not measured

Crack distances <0.35 mm will not subdivide

Inplane tensile stresses normal to the fibers are dominant for resin layer cracks
Layer cracks form suddenly and often cause microdelaminations

Layer cracks damage the top fibers in adjacent off-axis layers

The fiber cracking of a total layer follows adjacent resin layer cracks

©w

. Thermal Cycling

Space structures placed in low earth orbits may experience up to 50.000 thermal
cycles during their service life. Therefore, different materials were tested under space
conditions, [1]. The tests, depicted in Table 2, were conducted in vacuum, where the
heating to + 100 °C and the cooling to -160 °C was effected by infrared radiation and
by absorbtion of radiation by cold surfaces, respectively. The chosen heating and
cooling rates correspond to realistic space conditions, but the hold time at both
temperature extremes was sharply reduced on the supposition that no damage
developes at constant temperature.

Stacking sequence:  [£45%],5 , [:{: 45° ] s

Material: Test spefications:

Laminate Resin Curing temp. Medium Cycle time Cooling rate
°c min K/min

Compimide 65 FWR/JM6 | Bismaleimide 210 Vacuum 62 47

Fibredux. 914C—~TS-5 Epoxy 175 52 -

LY556/HT 976/JM6 Epoxy 175 Ny

Hercules 4502/JM6 Epoxy 180 23 32.5

Carboform SO 60/92/51 Epoxy 120

Temperature range: —160°C to +100°C
Total no. of cycles: < 3500

Measurements:
Measurements | No. of cycles Test
Stiffness 10,50,150,400, | Three point bending test,
800,1500 max € < 2%00 Table 2.
Strength 400,800,1500 | Tensile test Test conﬁgurations for thermally
Specemien size:  195+65 mm cycled laminates

Tests in vacuum are costly and time consuming (cycle time 62 min). Therefore, they
were compared with tests in Ny-atmosphere, conducted at similar thermal condtions
but reduced cycle times and higher cooling rates, Figure 8. In both environments the
degradation of strength, stiffness and crack density were very similar for equal cycl-
ing modes. Only an increase of the cooling rate at short cycle time increases the
damage. Therefore, space-rated facilities are not required for degradation tests at
thermal cycling.

Figure 9 depicts the acoustic energy, emitted at two individual thermal cycles. The
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highest damage rate were found during the first few cycles. When the cycling con-
tinued the damage increased further but at a diminishing rate. The onset of damage
at a certain temperature in the course of a cycle seems to be typical for composite
materials.

ocl— Fast cyclingmode ~ Slow cycling modes o sof
100k in N’;‘ ln/dz invacuum E’: L. Time [ min ]
P 0 —TTT7 T | e e T
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Figure 8. Figure 9.
Temperature versus time courses Acoustic energy emitted in a
for different cycling modes Comprimide 65 FWR-laminate
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T 10 /. 1 3
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%3 ,-" .(G
g 5 B~ /? E Y
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s | Code 52 L
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Figure 10. Figure 11.
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cycling modes cycling in different environments
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in Figure 10 the number of cracks per 10 mm ply length are plotted versus the
number oft termal cycles. For all of the materials considered damage is most severe
at fast cycling. Therefore, a critical damage state will be achieved faster at a short
cycling mode than in a slow mode. This may be of some importance for the quali-
fication testing of space structures.

Figures 11 and 12 show respectively the degradations of tensile strength and stifiness
due to thermal cycling. For slow cycling in vacuum the stiffness degradation is
<2 % smaler than the values plotted in Figure 12 for fast cycling in Ny-atmosphere.
These curves are not plotted, in order to avoid line jams.
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Code 92

Normalized tensile stiffness

Nj-atmosphere, 32.5 K/min cooling rate

Figure 12. Residual stiffness after thermal cycling

Summarized results for thermal cycling on different materials:

Slow cycling generates less damage than fast cycling
Damage increase for T < -80 °C
Damage progress with the number of thermal cycles

Damage still progress after 3500 thermal cycles
Damage received in vavuum and in Ny-atmosphere depends on the cooling rate
only.

4. Overheating

Structures fabricated by carbonfiber reinforced epoxy can be exposed to tempe-
ratures up to about 40 °C below the softening point without reducing their strength
permanently. But it may happen accidently, that a laminated structure is overheated
locally beyond that temperature. The questions arise, to what extent is the structure
damaced and how can it be detected?

Forsthesfollowingstestsylaminatesywithy a stacking sequence of [ 4 45],5 were used,
fabrivated of T300 / 914C. The dry resin has a softening point at Tg, & 180 °C and the
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glass point were measured at Tgg = 208 °C. In N,-atmosphere the specimens were
exposed to elevated temperatures of 180, 230 and 260 °C, until a mass loss of 0.8,
2.0 and 4.0 % were detected. Then the specimens were cooled down to ambient
temperature and the stiffness, strength and stress-strain-relations were measured in
air-atmosphere.

Figure 13 shows the mass loss with respect to the storage time for different tempe-
rature levels. If the specimen is exposed to temperatures lower than 40 °C below the
softening point, the mass loss can be neglected. But it increases rapidly, when the
temperature level oversteps the glass point. Due to ESA-regulations for space crafts,
the mass loss is limited to 0.2 % after 5.5 h exposure time, in order to avoid sedi-
mentations on lenses or electronic equipment.

7 0 Legend
°C Material : T300 /7 914C, dry
61 260 Glass point : 208 °C
f Stack HE X P
< 5k 230 °C Slorage : 180°, 230°, 260 °C
X N,-almosphere
— Tests 1 220 °C,
£ L | Air-almosphere
E
< 3
o
]
w 2 180 °C
©
=

[1} 1 ! I 1 Il I 1 ! 1
0 5 10 5 20 25 30 35 40 45 50
Storage lime ‘/l— [h'?]

Figure 13. Mass loss in 914C-material due to elevated temperatures

For temperatures lower than 40 °C below the softening point the strength reduction
is negligible, but it increases rapidly for temperatures beyond the glass ;;oint,
Figure 14. On each curve in Figure 14 the dots mark the intended mass loss of 0.8,
2.0 and 4.0 %, for which the storage time and the residual strength were measured.
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Figure 14. Residual strength after storage at elevated temperatures
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The elasticity properties do not change much with thermal exposure, Figure 15.
Apparently, the increase of the residual stiffness caused by the postcuring process
of the resin is balanced by chemical degradation, which is predominant only for long
exposure times. Figure 16 depicts the g-c-diagrammes for juvenile specimens. These
diagrammes hold also for specimens exposed to temperatures beyond the glass
point with the exception, that the diagramme is broken at the limit stress depicted
in Figure 14.
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Figure 15. Young’s modulus after storage at elevated temperatures
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Figure 16. Stress-strain-diagrammes of juvenile angle-ply specimens

Summarized results on overheating tests at T300 / 914C material:

Mass loss increases for T > Tgg

Residual strength decreases rapidly for T > Tgg

Elasticity properties and the finishing of the structure remains unchanged
Even for T > Tga layer cracks form and dense

Overheating reduces the strength significiantly, but it cannot be detected by vis-
ual inspection or by nondestructive vibration tests.
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5. Closing Remarks

The present study, partly supported by ESA-contracts, is not finished and will be
extended. Additional tests for thermal cycling and at very low temperatures are in
preparation, in order to find limit values for the CDS.
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LOAD AND DAMAGE DEPENDENT THERMAL EFFECTS IN CFRP-LAMINATES
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1. Introduction

The temperature variation during monotonic or cyclic loading of cfrp-
laminates is generally caused by the laminate stress state and the
energy dissipation during deformation work. Local stress variations
may result from changes of the external load or from the formation of
cracks, delamination or fibre fracture in the stressed volume. Due to
the thermoelastic effect there exists in case of an elastic deforma-
tion a linear relation between stress and temperature in the fibres
as well as in the matrix. This - means, that always a mean value of
temperature change is measured, because material constants differ.
The dissipation of deformation work is mainly due to viscoelastic and
plastic deformation of the matrix. It leads to an increase in
temperature.

Of special interest are the temperature changes during cyclic  load-
ing. The mean temperature value of the specimen characterizes the
area of the stress strain hysteresis loop. Changes of this tempera-
ture indicate unstable deformation processes which means that damage
development occurs.

On the other hand, changes of the temperature oscillation due to the
thermoplastic effect indicate changes of the stress amplitude which
also is a result of an increasing damage development resulting in

stress redistributions.

Thus, there seem to exist two sensitive methods of temperature meas-
urement which can be used to evaluate damage development under mono-

tonic and especially "undexr 'cyclic loading. It is the aime of this
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paper to show that temperature measurements can often be more sensi-
tive than strain measurements but if they are performed together,
they benefit from each other and give additional informationmns.

2. Experimental

All tests were performed on continuous carbon fibre reinforced epoxy
matrix systems (PAN-based T 300 carbon fibres from Toray or HTA from
Toho/LY 556/MY 720 epoxy matrix resins from Ciba-Geigy). Two types of
laminate stacking sequences, unidirectional [08] and cross-ply
[02,902,02,902}s were investigated. The tests -were performed on
servohydraulic testing machines. The specimen temperature was
measured with thermocouples (Fe—-CuNi) which were directly glued on
the specimen surface. To avoid heat £flux from the actuator into a
specimen, the grip temperature was hold constant by a special cooling
system. To compare the test results with established methods, the
elongation of the specimen was continuously monitored, allowing to
calculate the secant modulus. In addition, in selected specimens, the
variation of the electrical resistivity due to damage development was

continuously measured [1].

3. Results and discussion

Composite materials mainly fibre reinforced plastics, are gaining in-
creasing importance for structural design. For a reliable use their
durability is of essential importance.

In metallic materials failure occurs by crack initiation and subse-
quent propagation of a single crack. However, in composite materials
damage is associated to a simultanious initiation and multiplication
of interfibre cracks, delaminations and fibre breaks [2, 3] which all
form prior to final rupture. The in-situ investigation of damage devel-
opment during loading remains comparitively difficult. While in me-
tals crack length can be taken as a damage analogue, in composites
such a simple value can not be chosen.

In the past, stiffness reduction, continuously registered during

loading, turned out to be an appropriate damage analogue [4]. As
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polymere materials show an internal heating due to cyclic loading a
temperature variation can as well be used to monitor damage [5-8].
During fatigue loading of a composite material the heat generation
can mainly be related to the matrix material used, its viscoelastic
behaviour, internal fraction and the amount of crosslinking. The type
of fibre, its volume fraction and orientation and the stacking se-
quence in a composite laminate additionally effect matrix loading and
therefore heat generation. In addition to the materials aspects, condi-
tions as shape of sample, test frequency and load level influence
the amount of heating. However, also under static loading conditions
a temperature variation of a material can occur. In 1851 Thomson
(Lord Kelvin) [9, 10] showed the proportionality between the 1load
change applied and the resulting temperature variation for an isotro-
pic material under adiabatic elastic deformation and uniaxial stress,

where
AT = -a; ToAo / ¢ p
oy K_l = linear coefficient of thermal expansion
K = ambient temperature
c kJ K“1 m—'3 = specific heat capacity (1)
g cm 2 = specific density
Ac Nmm™~ 2 = stress change
AT K = temperature change

The above equation describes an effect, the so called "Thermoelastic

Effect”. The amount of temperature change of a certain volume element

depends on the change of the sum of principal stresses, on its materi-
al factors and on the ambient temperature. For an isotropic material

with a positive coefficient of thermal expansion uniaxial tensile

stresses lead to a decrease in temperature. The application of the

thermoelastic effect on carbon fibre reinforced plastics has first be

performed by Neubert et-al. [7, 8].

3.1 Thermoelastic Effect

Fig. 1 is a tension test of unidirectional laminate. Both longitudi-
nal and transverse stresses are plotted together with the temperature
change versus the applied stress. The nearly linear increase in

strain is accompanied by a steady increase in temperature.
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Fig. 1: Tensile test of a unidirectional laminate. Variation of

strain and specimen temperature.

The temperature increase is expected because the carbon fibres have a
negative coefficient of thermal expansion into the longitudinal
direction and they therefore heat up under tension load, due to the
thermoelastic effect. This is caused by the dominant influence of the
fibres. (The matrix, however, would cool down because of its positive
thermal expansion coefficient).

In Fig. 2 are shown the results from a cross-ply laminate, containing
0°- and 90°-plies. The fibres in the 90°-plies hinder transverse defor-
mation. They are under compressive load and their temperature change
is negative. In addition, the matrix in the 90°-plies is under ten-
sile loading, leading for the matrix, which has a positive thermal
expansion coefficient, to a cooling down.

Both these effects superimpose the temperature increase in the 0°-
plies, and the result is a cooling down of the intire specimen. At
higher stresses, with the initiation of transverse cracks [2] in the
90°-plies, the stresses in the 90°-plies are locally released and a
load transfer from the 90°-plies into the neighbouring O0°-plies

occurs. With increasing number of cracks the temperature increase due
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Fig. 2: Tensile test of a cross-ply laminate. Variation of strain

and specimen temperature.

to loading of the 0°-plies becomes more and more dominant (the curve
of temperature change goes through a minimum) and at high stresses a
temperature increase can be measured. Viscoelastic deformations at
the transverse crack tips possibly contribute to the temperature
increase.

3.2 Effect of Thermal Heating

Under cyclic loading conditions, which were performed at frequencies
of 10 Hz and with an R-value of R = 0,1 (R = ou/co; o, = minimum and
o_ = maximum stress in each 1load cycle) an internal generation of

h:at, due to viscoelastic behaviour and internal friction leads to an
increase in specimen temperature. In Fig. 3 is shown the temperature
development in a cross-ply test piece. A temperature increase due to
dissipation can be observed at the beginning of the test. Later the
temperature remains constant. This has two reasons:

- Each specimen has, depending on load level, frequency, stacking

sequence and constituents a stable temperature level [5].

- A damaged specimen has, if a constant damage state is reached, a

higher stable temperature level as an undamaged one [5].
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3,
that in early load history (during the first load

For the present test, where the result is shown in Fig. a constant
damage state means,
cycles) transverse cracks initiate in the 90°-plies, which are also
responsible for the slight stiffness reduction observed at the begin-
the stiff-

ness reduction and the specimen temperature remain constant.

ning of the test. Later the number of transverse cracks,

30/ % 104 LAY UP: [0,,90,,0,,90,]s  FIBRE: T300
= e RESIN:  LY556, MY 720 (50:50)
€ x - 2 R=0.1, f=10H
c 5 Z g  Opax=340N/mm? R=0.1, f=10Hz
c 1.4 < <
=] o 5
wJ .
Q 20 6\ iz
s w L . Secant Modulus f
S o % n e ¢ — — — — e | §
a 091 o = T"“f"“
o w <t - »
= m [ad (74
1 4 =104 o3 f
b— ) [a
= = = 24 Number of cracks
<< (.84 wi e e -
o — (== --
'(}," 0 0 Temperature
— — T T T T
0 1 2 3 L,x108
CYCLES
Fig. 3: Fatigue test of a cross-ply laminate at a low load level.
Stiffness reduction, development of transverse cracks and
temperature change is plotted versus the number of load
cycles. Specimen did not fail. Number of transverse cracks
taken from x-ray radiographs.
In the case of continuous damage growth, which will be observed at
higher fatigue load 1levels, also a continuous increase in specimen
temperature is measured. Fig. 4a shows the temperature change for

four different

tests. All tests were performed until specimen rupture

occured. A continuous temperature increase can be observed throughout

the tests. This corresponds with the
verse crack development
creases with increasing load cycles,

level the more

parallel observation of the trans-
in-
load

4b), where the number of cracks

the higher the cyclic

(Fig.
and,

transverse cracks are formed.
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Fig. 4: Fatigue test of cross-ply laminates at high load levels.

All specimen run to failure.

a) Temperature change versus number of load cycles.

b) Development of transverse cracks versus number of
load cycles. Number of transverse cracks taken from

x~-ray radiographs.

3.3 Further consequences of temperature measurement

We have seen in the previous sections, that under fatigue loading,
the temperature in a test coupon can not be regarded as constant; at
test frequencies of 10 Hz, for example, significant increases in tem-
perature have been observed. The variation of the specimen tempera-
ture can be used as a means of detecting damage in a composite speci-
men. Increasing specimen temperature is a result of increasing (ma-

trix) damage.

In Fig. 5 is shown the result of a fatigue test on a [02,902,02,902]s

cross-ply laminate [1]. Specimen temperature, stiffness reduction

(normalized secant modulus) and electrical resistivity were simultane-
ously measured and correlated with fatigue life. During the test, the

maximum load in a fatigue cycle was increased in stepwise fashion.

Fig. 5 suggests the following:
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Fig. 5: Variation of secant modulus, temperature and electrical
resistivity during cyclic loading (% of fatigue life) of a
cross—-ply laminate [1].

- During the test, a continuous’ increase in temperature, dependent
on frequency and maximum load level, can be seen.

- The electrical resistivity also increases, but at each load step
the resistivity jumps to a higher level.

- The high stiffness reduction at the beginning of the fatigue
test can be related to transverse crack development in the 90°-
plies, which is strongly related to the temperature increase.

- At the end of the fatigue test, approaching final failure, a
strong stiffness reduction is again observed, accompanied by a
rapid temperature increase. The resistivity jumps in steps to
higher levels, which indicates that load bearing 0°-fibres have
failed. The onset of final failure is then initiated.

It was shown in previous papers that the final reduction in stiffness

can be related to the failure of a single fibre or even bundles of

fibres [3].

The method of monitoring the electrical resistivity is thus an appro-

priate non-destructive in-situ technique for the investigation of

fibre fracture.
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Fig. 5 shows the temperature increase during the entire fatigue life.
The electrical resistivity increased with each step in the fatigue
load level. At the end of the fatigue life, during cycling at the
maximum fatigue load level of Ohax = 720 MPa, the resistivity of the
specimen decreases as a result of the temperature increase. Erratic
increases in resistivity occur only in association with fibre frac-
ture. The observed decrease in the electrical resistivity can clearly

lead to misinterpretation of the results.
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Fig. 6: Variation of secant modulus, temperature and electrical

resistivity during cyclic 1loading (% of fatigue 1life).
Electical resistivity corrected for temperature variation

[1].

A correlation to the resistivity on the basis of temperature measure-
ments is therefore necessary. The variation of the resistivity due to
the temperature increase of a cross-ply test piece has to be identi-
fied. From these data the equivalent resistivity values can be taken
to correct the actual resistivity data of the fatigue test. The cor-
rected values for the electrical resistivity for another fatigue test
are shown in Fig. 6. A continuous increase, or at least a constancy
in the electrical resistivity can be observed, but there is no 1longe
any decrease.
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4. Conclusion

It could be shown, that the measurement of the temperature variation
can be used to get information about the internal damage situation in
a carbon fibre reinforced plastic laminate. It can especially be used
in fatigue tests as a damage analogue. The actual temperature of a
test coupon has also to be detected, if the variation of the electri-
cal resistivity in a carbon fibre reinforced plastic laminate is used

as a damage analogue. A proper information can only be achieved by cor-

recting the resistivity information with the temperature.
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A STATISTICAL APPROACH TO THERMAL SHOCK BEHAVIOUR OF SYNTACTIC FOAM
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Abstract, The failure characteristics of a syntactic foam made of hollow glass microspheres bounded by an
epoxy resin matrix can be described by a Weibull statistical approach. A serie of tensile tests gave two
Weibull parameters. It was checked that this approach allowed to predict the fracture strength of notched
specimens as well as the fracture toughness Kic. In the case of a thermal shock , it can be shown that the
time at which failure occurs is not only a function of the thermal characteristics of the material, but depends
also on the Weibull exponent.

1.Introduction.

Syntactic foam, a material made of hollow glass microspheres bounded by an expoxy resin, is particularly
prone to thermal shock failure because it possesses a rather low thermal conductivity and a high coefficient
of thermal expansion. This represents a problem in the fabrication of this material, as the polymerization
generates heat and this results in thermal gradients, inducing tensile stresses at the surface. If the process is
not well controleed failure of the part might take place.

We studied the tensile properties of this material, and we drew a micromechanical model to relate the
macroscopic mechanical properties to the microstructure, namely to the distribution of the sizes of the
microspheres (1, 2, 3). We used Weibull statistics to describe the tensile properties and we were thus able
to predict the failure of notched specimens and the fracture toughness KIC of this material.

We will first recall these results, in order to show how such a model can be used in thermal shocks
situations.

2. Material

The syntactic foam studied contained hollow glass spheres whose diameter ranged between 20 and

200 pm. with a wall thickness of 1 to 2 pm. The size followed a log normal distribution. Their total
volume fraction was about O.64.

The mechdnical properties were the following :

density : 0.63

Young's modulus 2700 MPa. Poisson ratio 0.30

tensile strength 28 MPa

compressive strength 85 MPa

fracture toughness KJC, 0.78 MPa Ym

22 tensile specimens displayed a dispersion of the fracture stress which could be described with a two

Pr=1-exp [- (O/o‘u)mvlo]

Inthisiexpression'Ovis the fracture stressy Vithe volume of the specimen and PR the fracture probability.

parameters Weibull plot
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The Weibull parameters were found to be

m=139

Oy = 60.0 MPa

Vo =0.216 mm3

This value of Vg was chosen to be the volume of a cube of side equal to 3 times the biggest diameter of the
microspheres (or 15 times the mean diameter) (fig. 1).

PR
1
L)
Q
°
0,5 - °
(]
[ ]
)
(]
0 1 ] 1 1 1
40 45 50 55 60 65 70
O (MPa)
Figure 1. Weibull distribution of the tensile fracture stress of the syntactic foam : fracture probability as

a function of the fracture stress.

The size distribution function of the defects could be related to the Weibull parameters by the relation.

@ = (w2 az)% N (mvmv ) (Kxo'cu)m/¢%”

Where ¢ is the diameter of the microspheres and O an interaction parameter which was adjusted at a value
of 1.4.

Figure 2 shows the fit which was obtained between the experimental size distribution and the one given by
the above formula derived from the Weibull law,
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Figure 2. Comparaison between the size distribution of the microspheres and the size of the defects
deduced from the Weibull distribution of the fracture stress.

3. Use of the Weibull law to predict the failure probability of parts and relation with Kjc..

When the stress is not uniform the failure probability can be calculated with the formula

Pr=1-exp I-f (Glcu)m%v_o

It is convenient to define the Weibull stress Gy such that

m

o=l Agy
-| v

Where o is the maximum principal stress and the integral is taken over the volume where it is positive.

As an example we tested five notched specimens described on figure 3. The fracture load is given in table I
and the corresponding Weibull stress was computed using a finite elements model. This allowed to show
that these experimental results all fell in the scatter band of 10 to 90% predicted probability of failure.
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Figure 3. Shape of the notched specimens.

Table I.  Fracture load of the notched specimens and corresponding Weibull stress and failure probability.

Test number 1 2 3 4 5
Fr (Kg) 900 890 870 856 725
O (MPa) 63.5 62.8 61.4 60.4 51.2
Pg 0.89 0.86 0.75 0.67 0.12

Furthermore using the stress distribution in the elastic singularity of a crack, from the Weibull law of the
material the fracture toughness could be deduced as :

1/m
4 \% e Vm
Kic= /n = G,V mre(Ln ("L—)
1435 _m-3 g2 P
8 (m-2)(m-4) co

Where B is the crack front length

1/3
and Ieo = (1t/3ﬁ 110) 9
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o being the largest diameter of the unbroken microspheres when the fracture strength of the resin is
reached and 1o the corresponding volume fraction, respectively 25 um and O.2.

Table II. Shows a comparaison between this theoretical value and the experimental results.
Table II. Fracture toughness values and failure probabilities.

Pa 0.1 0.5 0.9
Kic
MPa Ym 0.69 0.79 0.85
theory

- K
MPa Ym 0.70 0.78 0.79 0.83
experiment

The measured fracture toughness values all fall within the 10% - 90% bounds of the failure probability and
are close to the predicted value for a failure probability of O.5.

4. Application to thermal shock resistance.

Let us assume that the surface of a thick plate of syntactic foam is suddenly cooled from

To to T1 (To - T1 = AT).

The temperature distribution follows a variation which is an error function of the variable x/2YKt, x being
the de pth coordinate, t the time and K = k/pC where k is the thermal conductivity, C the heat capacity and r
P the specific mass. The thermal contraction of the material at the surface, assuming plane strain condition,
induces tensile biaxial stresses which can start cracks on the surface. If a deterministic approach is used,
this happens only if the temperature difference AT is high enough for the stress to exceed the fracture
strength of the material and then cracking occurs at time t = O.

Now knowing the stress distribution from the evolution of the temperature, the Weibull stress cw can be
computed, and hence the evolution of the failure probability, as a function of time. In general the integration
needed to compute the Weibull stress cannot be achieved analyticaly. However a numerical method can give
the result.

In order to obtain a feeling for the predicted trends, the problem can be simplified by assuming a linear
temperature distribution which penetrates in the plate as a function of 2 YKt. Thus

T=Ty+AT|——- ifx<2 YKt
0 IR xs27Ke
T=T, ifx>2 VKt
The corresponding biaxial stress field is
=_.213_(}_|.é.'1;.__1-._.§...] ifxszm
(1+v)(1-2v)| 27Kt
o=0 ifx>2 VKt

Where E is Young's modulus, V the Poisson ratio, O the coefficient of thermal expansion
The Weibull stress is then given by
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27Kt

m g 2E o AT " x "
= o -] &
WV [(1+v)(1-2v)}‘ v

for a plate of area S.

Finaly the failure probability is such that

N 2E o AT i s 27Kt
PR (14+v)(1-2v) Voom m+1
u

Assume = 30.10-6 K-1 and 4K = 10-6 m2 sec-1.

If T =100°C, it is found that the time for a crack to start in a plate 10 x 10 cm?2, is 4 sec with a failure
probability of 50%, whereas the maximum stress at the surface reaches only 15.6 MPa, below the fracture
strength.

The fracture probability increases as a function of time. Owing to the assumption of plane strain condition
the entire plate will be under stress when the temperature becomes constant and equal to Tj. In more
realistic calculations it will be found that the stress increases at first reaches a peak and then decreases as a
function of time. Thus the failure probability will reach a maximum for a given time.

Given a certain probability of failure, say 50%, the relative variation of the fracture time is given by

At Ao, 1 2E o AT
ik e i ] )
o, (1+v(1-2v o,
yielding
Ac
At 25 2%  gdm
t m

Oy

Thus the fracture time increases with both Weibull parameters, and a small gain can bring a large
improvement. To increase the average fracture stress O the average size distribution of the microspheres
should be diminished because the stress concentration in the glass walls was found to vary as the square
root of the microsphere diameter. To increase the Weibull exponent m the size distribution of the
microspheres should be narrower. This will be limited by the scatter in the fracture properties of the glass
itself which was not incorporated in this analysis, but which would add another Weibull distribution to the
failure strength.

However this conclusion would be completely different for severe thermal shocks, with a temperature drop
so large that the logarithm in the above expression, giving the relative variation of the time to fracture as a
function of the relative variation of the Weibull exponent, would become larger than 1/(m+1). Adopting
again the same values for the various parameters, this would correspond to a temperature drop larger than
200°C. In such a case, a widening of the size distribution of the microspheres would be beneficial
provided the average would remain as low as possible.
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Conclusion :

Considering that the tensile fracture strength of syntactic foam obeys a Weibull distribution which is related
to the size distribution of the glass microspheres and that this statistical approach was able to predict the
failure probability of notched or cracked parts, it was shown that a better resistance to weak thermal shocks
could be achieved by increasing the Weibull exponent and the average fracture stress. This would be
obtained by narrowing the size distribution of the microspheres keeping the average as small as possible.
For strong thermal shocks on the contrary, the size distribution should be as wide as possible while the
conclusion would remain the same as far as the average size is concerned.
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3. Dan Wei, D. Baptiste, Ph. Bompard, D. Frangois. "Statistical Failure Approach to an Heterogeneous
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Static and Dynamic Pull out of an Elastic Rod from a Rigid Wall

Ingo Miiller W. Miiller P. Villaggio
Physikalische Ingenicurwissenschafl Scienza di Cosiruzioni
TU Berlin, 1000 Berlin 12 Univ. di Pisa, 56100 Pisa

1. Quasgistatic Pulloul by Energy Crilerion

The simplest imaginable fracture problem occurs in the pull-out of a linearly elastic
rod thal is glued into a rigid wall, see Figure 1. L, and L = L, + 8 are the un-
distorted lengths of the undetached rod and of the partially detached one. 1, and 1 =
l, + s are the corresponding lengths of the distorted rod. The distorsion is given by
the clongation A of the free end such that 1o = Lo + A and 1 = L + A holds.

e s =z
x| S

Figure 1: Rod glued into a rigid wall

We let X and x be the distance of a particle of the rod from the wall in the un-
distorted and distorted states respectively, so that u(X,t) = x(X,t) - X is the dis~
placement. As is well-known a displacemeni propagales along the rod obeyin{;‘ the

wave equation of linear elasticity, viz.

2
u- c? g—-)-(-‘; = 0 with u(lLyz,t) = A(t) and wu(-s,t) = 0. (1.1)
¢ = 2‘_5_22 is the speed of sound, where A and p are the Lamé coefficients of the rod

and ¢ is its density.

In a quasi-slatic displacemenit the acceleration is neglected so that (1.1) reduces to

the ordinary differential equation

9%u A(L)

wE 0. Hence u(X,t) = L. +s (X + s). (1.2)

The stress in the rod is given by

g = E g—l—): wilth E = ;‘3}++”2 ) - elastic modulus
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and il is constanl along the rod. The force needed for the elongatlion A(L) is there-

fore given by

EA

F(A,s) =0 A = -Lo—"'s A (1.3)
where A is the cross-section of the rod.
We obiain the elaslic energy stored in the rod by integration
4 EA A2
We1(4,8) = J. F(x,s)dx = 5 m . (1.4)

o

In the partially detached rod we also have to consider the energy stored in the de~
tached area. This is akin to the surface energy of a newly opened crack and we take
il to be proportional to s, the lenglh of delachment. Therfore the total encrgy reads

EA  A?

w(a,s) = 7 -Lo_+s +vs . (1.5)

Figure 2 shows W as a function of s with A as parameter on the left and as a func-
tion of A with s as parameter on the right. Both groups of curves lend themselves
for a delermination of the crilical elongatlion Ag., where Lhe delachment staris, and

for the calculation of the length of detachment as a function of the elongation A.

S\\\\\ %

-

-5.00 .00 5.00 10.00 15.00 20.00 25.00 30.00
/
M~

-20.00

~.40

°
8
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s

. 2.00 -5.00 -2.50 00 250 500
S DELTA

Figure 2: Energy as a function of A and s.

On the lefi hand side of Figure 2 we have plotted the cnergy as a superposition of

3 2
the hyperbolae ? i A4_ . and of the slraighl line ys. The abscissa of the minimum of
0

the superposition in the range s > 0 determines the length of the delachment. It is

easily seen that for A € Agy = %Z\ Lo that minimum lies at s = 0 while for larger
values of s the minimum lies at
s = %3 A - L, for A2 Ay = % Lo - (1.6)
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On the right band side of Figure 2 the energies are ploited as parabolae with ver—

"}

Lo + 8
Therefore the parabolae intersect each other and, of course, the detachment will

tices on the ordinate at ys and with decreasing curvature as s increases.
adjust itself so as to provide smallest energy, i.e. so as Lo be on the lowest pa—

rabola for any given A. The first intlerseclion occurs at Ag, = L, and from

/Zi
EA
Lthere on the detachment will have the value s thal coincides with the envelope of
the group of parabolae. The envelope is calculated by elimination of s between

. _RA A% aW _ BA A2 _
Wegsst? wd F=-o@+ezt?7=0-

We conclude that the envelope is given by the straight line
Wewy = V2yBA A - 7 Lo . (1.7)

For a given A we therefore find ithe corresponding value of s as the one whose ener-

gy (1.5) has the slope of the envelope, viz. v2yEA. Once again we thus obtain (1.6).

The equation (1.6) determines the lenglh s of delachment as a function of the elonga-

tion A(t), but only in the quasistatic approximation. If we wish to consider dynamic

detachment, we need more sophistication in the description of rod and glue; il is
then not enough to characterize the energy of detachment. Therefore we proceed to

describe a structural model of the system.

2. A Model and its Critical Elongation in Quasi-static Displacements

The model shown in Figure 3 represenis the glue by an array of grips and springs.
The grips are a distance 6 apart and the springs are elastic with spring constant A.
They are supposed Lo break, if Lthey are elongated Lo the critical length g¢.. Ob-
viously the springs shield the part of the rod behind the grips from the full

slrength of lhe stress in the main part of the rod. We shall assume Lhat the shield-

ing is so effective that no displacement occurs in the rod behind the second intact
X)

spring.

ALALLL
mmn

2LALAL
rr

Figure 3: Modelling rod, glue, and rigid wall.

¥) This assumption will be relaxed in a fulure work. Il simplifies the analysis greally
and therefore it is made here.
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With the assumplions as described, only iwo paris of ithe rod have any displacement
at all, viz. part 1 with -6 € X € 0 and part 2 with 0 ¢ X ¢ L,. For the quasi-static
cage the displacements are linear functions of X, because they must satisfy the

differential equation (1.2),. Before any spring has broken we have the boundary

conditions
u; (-6) =0, uy (0) = uz(0),
(2.1)
duy _ du, -
EA e X=o+ Aug (0) = BA X =0 uz(Le) = A.

Equatlion (2.1)3 represenis ihe balance of the elastic forces in the rod and in the
spring at the first grip. The olher equations are self-evidenl. With (2.1) the dis-

i

placements are casily calculated to be
ug
with

) .
—ﬂ[%:“l]-i-?‘—ox 1*’]5&[1+§{]

g is Lhe elongation of the spring and (2.2); shows how that is related to the clonga—

(2.2)

"

uz

tion of the rod. The left hand side of Figure 4 shows u(X). The kink in Lhe curve
represents the shielding of the rod behind the spring.

u(X) u(X)
Acr T

A F C %Jﬂcr . .

) 0 Lo X -26 -6 0 Lo X
Figure 4: Displacemeni in the rod before and after first break.
Of course, a glue grips the rod continuously while the grips of the model are the

distance 6 apart according to Figure 3. Therefore we have to assume thal 6 << L,

holds, if the model is to be realistic. In that case it follows from (2.2), that

A
g, _Ta
56 oA °

For shielding we need to have g < %— and therefore we must require thalt S\ siays
1]

finile as é§ tends to zero.

The right hand side of Figure 4 shows the displacemenis of the rod and the spring
for A = Ag before and after the break of the spring has occurred. The energies of
the spring and of the two_paris of the rod are easily calculated, the lalter ones from

(1.4), and they are represented in the following table.
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BEFORE AFTER
2 2
L '('A—c%?l = 715 dor1- '['lT]z Wy = 5t (A;: :(;6))2= 2(%&5) aeef1 - 7 )]z

From the table we are able to determine W = Wg + W; + W, before and after the
break and calculate W8 - WA as a function of A¢r or vice-versa. In the case & << Ly

we obtain

_ [2(WP - W) s
Agr = 1/—-———-EA——-——— Lo - (2.3)

Comparison wilh (1.6); shows thal the model provides ithe same formula for A., as the
argument presented in section 1, which is the standard argument of fracture me-
chanics involving surface energy. The only difference between (1.6); and (2.3) is that
the surface energy per crack length 7y is now replaced by the energy release
(W8 ~ WA)/6 per "crack length" 6. Of course, most of the energy W8 — WA will go into
heal as the rod jumps from one displacement to the other one in Figurc 4. But this

is the same with s in section 1.
By the above quasi-sialic argumenis we have gained some confidence into the model

and now we proceed to a proper dynamic situation.

3. Dynamic Pullout

Now we lake the full wave equation (1.1) seriously and assume Lhat the elongatlion
A({t) of the free end of the rod creates waves when displacements strain the springs

and possibly make them break. The general solution of the wave equation (1.1) reads
u(X,t) = ;X —c(t - 7)) ¥+ 0, (X + c(t - 7)) (3.1)

where 0, and 0; are calculated from the initial displacemeni u(X,r) and rate of dis-

placement G(X,r) as follows
e(a)~—u(ar):lljﬁ(ar)da (3.2)
: 2c ’ : :

Thus the solulion (3.1) is a superposilion of two waves running with speed ¢ to the
right and left.

When i springs have been broken, the last one al lime 7{ we have to find u(X,l) from

therdisplacement u(X;7y) and the rate of displacement u{X,r;) at the time 7;. As the
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wave develops, it must satisfy at all times the boundary conditions
u; (-(i+1)8) =

u; (—id) = up(-is) ,
(3.3)
du, du,

—_— + =
BA gg |y P W (-i0) = BA G|

uz(Le) = A(L) .

Here u; and u, as before denote the displacement on the left and right of the loaded
spring at X = - id.

A momenl's refleclion shows thal the propagation of the wave lo right and left, Lhe
transmission and reflection at X = - i6 and X = -(i + 1)6, the retransmission and re-
reflection al those poinis presenis an enormous "book-keeping problem" that can
only be solved numerically. We have started to look at a few cases and they are pre-

sented in Lhe figures 6§ and 6.

Figure 5: An incoming wave does not break springs
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Figure 6: An incoming wave
breaks Lwo springs before
moving back spenl and dis-
gipaled.



202

In both figures we start with an incoming sine-shaped curve of height 120 in suita-
ble non-dimensional units. The critical displacemeni ;. is only 99 in the same units
in Figure 5. Yet, no spring breaks as we can see. The reason is that the waves re-
flecled at X = 0 and X = -6 weaken the incoming wave so much thatl the critical load

is never reached on the first spring.

Figure 6 corresponds to a "weaker glue", i.e. a sel of springs whose crilical dis-
placements are B¢y = 79. Accordingly two springs are broken, one already by the in-
coming wave, Lhe other one later on. AL the end the wave moves off to the righti,
having spent ils energy in breaking two springs and having dissipated energy by

the various refleclions and iransmissions.

The pictures of Figures 5 and 6 represent our first calculations and are, if anything,
of heuristic value only. The model awails a systemalic numerical study wilh realistic
values of the data. We trust, however, that studies like these may furnish valuable
information on detachment of fibers and whiskers in reinforced materials under im—

pulsive loading,
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ABSTRACT

The problem of an external radial crack in a thermally stressed unit cell of a
fibrous composite with an elastic-perfectly plastic matrix material is considered. By
using a modified Dugdale type crack model together with the weight function technique
different influences like the mechanical properties of the phases, the cell geometry, the
plastic zone developing around the fibre, and the crack length onto the plastic zone

length at the crack tip are considered.

INTRODUCTION

The variety of composite materials and existing crack configurations in those struc-
tures gives rise to different specific interaction problems. The present paper deals with
such a problem for a unidirectic;nally reinforced fibrous composite. The fibres are conti-
nuous, elastic, and perfectly bonded to an elastic perfectly-plastic matrix. The fibre vo-
lume fraction is relatively small. The problem concerns a composite unit éell consisting
of a circular cylindrical fibre with a coaxial matrix coating. A straight longitudinal
crack with a crack front parallel to the fibre axis enters the matrix along the radial
direction from its outer surface. The crack length is relatively small compared with the
cell radius. The loading is defined as resulting from a process of progressive matrix
cooling. The elastic-plastic properties of the matrix material are considered as tempera-
ture independent. Under these conditions, an axisymmetrical stress state will arise in the
uncracked unit cell. Further, the crack itself is of the opening mode type.

Some of the aspects involved in the problem have been already treated in a series
of articles by Herrmann /1/ and Herrmann and Mihovsky /2-7/. In the present work the
approach from the references /2-7/ has been extended to the problem of an externally
(edge) cracked unit cell. The influence of the fibre volume fraction, constituents
properties, load intensity, and crack length, repectively, on the development of the
plastic zones surrounding the fibre as well as the crack tip has been analyzed and illu-

strated by numerical results.
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1. CELL AND CRACK GEOMETRY

The cell is referred to cylindrical coordinates {r,8,z} and is thereby axialsymmetric
with respect to the z-axis. The fibre and matrix cross-sections occupy the circle
0srs re and the annulus re £ r g - respectively. For small crack lengths the plastic
zone surrounding the fibre may be considered to occupy the annulus re £r £ RC (as in
the case of an uncracked unit cell). The crack is of the Dugdale type. Its length is 1
and the length of the thin plastic zone is s. Fig. 1 shows the cross-section of the

cracked unit cell.

Fig. 1: Cross-section of the cracked unit cell.

Furthermore, the notations E’.f, Em and Ve Vo, are used for the Young's moduli
and the Poisson's ratios of the fibre and the matrix material, respectively. The matrix
material obeys the von Mises' yield condition and the associated flow rule “(cf. for
example /8/). Its tensile yield stress is oy. The Em/Ef—ratio is relatively small compared
to unity.

2. RELATED ARGUMENTS AND RESULTS
2.1 A GENERAL PLANE PROBLEM

A specific feature of the approach developed in the references /2-5/ is that it
accounts for the interactions between the whole group of basic fibre reinforcement
effects (stiffening, strengthening, shrinkage, and stress concentration) and the principal
effect of the matrix ductility - its limited elastic response. In particular, the approach
adopts that the elastic part of the axial strain is not negligible (due to the strong stif-
fening effect) and keeps an approximately constant average value 6*. In the thermal
case this adoption concerns not the total strain but only that part of the latter which

is due to the thermal stresses. By means of this adoption the approach reduces the two
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model problems from the references /2,3/ to a general plane stress-like perfect plasti-

city problem /9/ with a yield condition of the form (ellipse in the plane of the princi-

pal cross-section stresses o rpl’ oepl)

2E ¢* 4o 2
Pl_ Py, (PT  P1__“m 2. o Ty _ 1
(op -og )+ (o) +0g /3tanq>) tan%¢ 3 0 (1)
where tan¢ = (1-2\)m)/ V3. The quantity e is a measure of the above mentioned

interactions and is specific for the given composite structure and the loading status as
well.

The stresses within the plastified matrix region are

1
E E e¥
+
-1-_—?;-' 7—— COS(u) d)) 2)
where sinw = ( ogl—orpl) /3/20y. Thereby the angle w = w (r) defines the positions of

the stress states given by egs. (2) along the yield ellipse. The cases |w|<¢
(or Ju-m] <¢), ¢<w<m -¢p (or ¢ <w -m < 7w~-¢ ), and |w| =¢ (or jw -7 =¢ ) correspond
(cf. references /8,9/) to elliptic, hyperbolic, and parabolic types of the set of equations

governing the general plane problem.

2.2 MATRIX YIELDING IN CASE OF THERMAL LOADING

In the uncracked thermally loaded unit cell matrix yielding takes initially place at

the interface r=re due to the stress concentration effect. The angle Wpp =W (rf) at this

instant has the value wp where
[of
E 3#
coswp = - L (3)
RC Uy +\)m

Moreover, progressive matrix coolmg implies a monotonic increase in Wpg due to in-
creasing shrinkage, cf. eqs. (2) for o p(rf) within the hyperbolic interval [wR m-¢]. At
the instant Wpp =T - ¢ designating a parabolic point of the yield ellipse a free plastic
flow or so-called plastic instability tends to take place at the interface. At this critical
instant failure modes may also develop in the previous uncracked thermally loaded unit
cell (debonding, matrix cracking, fibre breaking).

Further, the w(r)-dependence in the plastic zone is implicitly given by the relation

R 2
smw
rz  STWR,

exp [(w- WR, )/ tan ¢1 (4)
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The plastic zone radius Rc increases in accordance with eq. (4), that means the

plastic zone spreads into the matrix phase with progressive loading. Thereby, the radius
*

RC achieves its largest value Rc < rn which is given by eq. (4) with r = re and

=m-¢.

2.3 STRESS DISTRIBUTION

In the purely elastic state of the unit cell the transverse stresses in the matrix

phase are
el 2
r
T (1 R ©
051 mom r
where

V.-V
) _ m °f
C = Y'f (Xme(],"'\)m)[l W)] (6)

=Er2/E r? 7
E = Eerd/E r. , (7)

Tm £ 0 is the uniform matrix temperature , % is the coefficient of linear
thermal expansion of the matrix material.
Egs. (5) apply to the stresses in the elastically deforming annulus Rc $rs rn, as well,

but with a new constant Cep’ which is

(8)

where © pl(R ) is given by egs. (2) with w = wy .
r e ¢

Matrix yielding takes place at a temperature Tm = Tmpl

where

Pl _ _ %

To = - ¥ (14 ) /o E L (9)
The stresses in the plastic zone rp 1 g Rc are given by egs. (2) along with

eq. (4) for the w(r)-dependence. The plastic zone radius R affects the stresses in both

the elastic and the plastic regions through egs. (5) (with C®P instead of C) and (2)
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(with eq. (4) for w = w (r)), respectively. Its temperature dependence follows from the

Rc( t—:z) - and ez(Tm) - relations which read according to the references /4,5/.

rfz Ae,
RE= RE[1-(1- ——) (1-—2)] (10)
*
Rc Aez
E_ R¥? r2
_ c ¢C f 1 -1
AEZ -OLmATm[1+Ec+dmATmT:E?'En§—(1'-I;’:2-) 'Ezg:] (l”
c

. _ - pl _ *
In egs. (10), (11) the notations ATm = Tm Tm , Aez = E*E /Ec are used, where
€, is the total axial strain. The quantity AE: is the value of the Aez—strain at the
. . _ % : = R¥* =T~
critical instant Tm = Tm (with Rc = Rc » Wpgp = m™-¢).

2.4 THE MODIFIED DUGDALE CRACK MODEL

In the references /5,7/ it has been shown that the stress state within the thin
Dugdale-type plastic zone at the tip of a radial crack in the matrix corresponds to the
parabolic point w=¢ of the yield ellipse, eq. (1). Using this value of w egs. (2) imply
immediately that the stress Spz acting across the plastic zone

(rm—l—s)g rg (rm—l)is (cf. also Fig. 1)

Epe™ o (12)

- =Pl - y
Ony = O =g = + )
DZ 6 9=0 0 |w=¢ I-?\)m ;;3s1n¢

3. THE EXTERNAL RADIAL CRACK PROBLEM
3.1 MODEL PROBLEM

In accordance with the assumptions about the cracked composite unit cell configu-
ration (small fibre volume fraction and crack length) and following the very sense of
Dugdale's approach one should expect that with an implicite reference to St. Venaint's
principle a reliable approximate estimate of the crack tip plastic zone length might be
derived from the solution of the following model problem.

The crack is considered as contained in a solid homogeneous circular cylinder of
the matrix material. The stress state in the latter results from the O;I-Stress distribu-
tion from eqs. (5) applied to the crack surfaces (with C = C°P in case of the presence
of a plastic zone re £ rs RC). Such a model is, of course, valid if the condition
(l+s)/(rm—Rc) <1, cf. Fig. 1, is satisfied, where l+s is the length of the fictitious crack
appearing in the Dugdale approach. It is also clear enough that the cracked cylinder
model becomes less realistic with progressive loading (matrix cooling), i.e. with in-
creasing RC- and s-values. But it should be noted at the samf time that failure modes
may develop in the unit cell at the critical instant Rc = Rc (cf. Section 2.2), or due
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to a crack growth initiation at a critical plastic zone length s* = s*(l) for which the
ratios (l+s)/(rm—Rc*) or (l+s*)/(rm-Rc), respectively, are still small compared to unity.
Thus, to consider the entire interval 0 < (l+s)/(rm—Rc) £ | appears to be of interest
although increasing (l+s)/(rm-Rc)—ratios will definitely lead to a decrease of accuracy.

3.2 BOUNDARY VALUE PROBLEM FOR THE CRACKED CYLINDER MODEL

The cylinder has been considered under general plane strain conditions,
i.e. €, = e*mme is independent of r and z, respectively. Its lateral surface r = '
is stress-free. By means of the superposition principle and in accordance with the basic
idea of Dugdale's approach the real edge crack of length 1 with stress-free surfaces is
substituted by a fictitious crack of length l+s with the following opening mode stress

distribution applied to its surfaces (cf. Fig. 1):

1
og s (rmh)Srsry

Oe(r’e) f=+0 {031-002 s (rm—1-s)§ré (rm-l) (13)

Thereby, the stress Ggl in eqs. (13) is defined by eqs. (5) with C (cf. eq. (6)) or

C®P (ct. eq. (8)) in the cases of absence and presence of a plastic zone rg £rs RC,
respectively. The stress pz is defined by eq. (12).

3.3 THE CRACK TIP PLASTIC ZONE LENGTH

Basing upon different arguments Bueckner /10/ and Rice /11/ have developed an
effective approach, the so-called weight function method, to solve plane opening mode
crack problems involving given cracked body geometry and arbitrary load systems.
Further, the arguments and the results considered in the foregoing sections allow a

determination of the plastic zone length s from the solution of the equation
Ki(s) =0 (14)

where Kl(s) is the s-dependent stress intensity factor induced by the load system
from egs. (13). Thus, by applying the weight function method, eq. (14) takes the form

! 3u "m 3u
-1 opy 5t dr+ [ og(r,e) ~tdr=0 (15)
r‘m-l—s rm~1-s 6=0

where uy is the transverse displacement of the surfaces of the fictitious crack in-

duced by a certain symmetrical load system.
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Now an explicit form of eq. (15) can be obtained by using some approximate results
presented by Gregory /12,13/ for the problem of a disc containing a radial edge crack
subjected to a constant pressure /12/ or a concentrated force /13/, respectively.

A series of lengthy transforms and calculations based upon these results has implied

the following explicit form of eq. (15):

%pz ST (L+S) (4- 2L -S) , _2(2-2L-S) 1+
2 v A
M(2-L-S) % N(L+S)"2 (2-L-S)"
. % 2
2h _(L#S)"2 g (2-L-S)* oM 1 A[ (L+S) L+S - In(1-L-S)) -

(16)

2
n (1-L-S)] = 0
N(L+S)%2 (2-L-5)%

where L=l/rm, S=s/rm, M=0,355715..., N=0,966528..., A=Emé/“+\)m)rm2 with C=C and
C=C®P for the linear-elastic and the elastic-plastic deformation of the unit cell |,
respectively.

It is noteworthy that in the particular cases when the stress distribution in egs.
(13) takes the form of a constant pressure or of a concentrated force, respectively, the
left-hand side of eq. (16) implies the results obtained in /12,13/. In the case l/rm+ 0
its left-hand side leads to the known result for a half-space with an opening mode edge
crack. These implications support to a certain extent the validity of the latter equation.

4. NUMERICAL RESULTS

Eq. (16) has been solved for different cracked cell geometries (rf/rm— and l/rm-—
ratios) and mechanical properties of the constituents (Em/Ef—ratios and \)m—\)sz\)—diffe-
rences). The properties have not been referred to certain specific composite constituents.

Nevertheless, all sets of properties considered mvolve the combination E =610 N/mm2,

-6,.-1

E =24 10 N/mm Vo =0.31, v .=0.27, y-135N/mm y —182°10 K~ Wthh corresponds

pracucally to a C- flbre/Al m;trlx composite (with Tf-0°C T ——80°C) and is involved in
the computations carried out by Herrmann in /1/. All numerlcal results are obtained
with the values of Ef, Ve cry and % spécified above.

Thereby the solid circles (signs "+") in the figures 2-5 correspond to the instants
of initial matrix yielding at the interface r = re The star signs "*" reflect the instants

at which the two plastic zones join each other.
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For the sake of simplicity eq. (16) has been solved in the following way. For given
si-lengths (starting from s/l = 10_3) corresponding temperatures T . have been obtained
from eq. (16). Then the Rc i(Tm i)—values have been derived from the egs. (10) and (11),

t] I

respectively.

0.35 R/ 0.06 Re/fm
0.2 + 0.6 0.6
re I5201
L 0.4 L 0.4
L 0.2 L 0.2
i Tm,°C T C
150 -100 Y =150 150
a) Em/Ef=0‘25’ Av=0.04 b) Em/Ef=0'25’ r‘f/r‘m=0.1
Rclrm
L 0.6
0.25 0.66
0.4

EmIEf=0.125

150 100

c) r'f/rm/O.l, Av=0.04

Fig. 2: The RC(Tm)~curve for different parameters

a) fibre volume fraction; b) Poisson's ratios difference;
c) Young's moduli ratio

Fig. 2 shows the influence of a) the fibre-volume fraction rf/rm, b) the Poisson's
ratios difference Av= v - Ve and c) the Young's moduli ratio E_/E. on the R (T )-
curve. Fig. 2c reflects implicitly the O’y—influence through the Emloy—ratios as well. The

cases a) and b) prove that the increase in each of the rf/rm-and Av-values implies in-

creasing temperature sensitivity of the plastic zone radius. The Tmpl—temperature is
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practically not influenced by the set of rf/nn— and Av-values considered in these cases.
Increasing Em/Ef—ratios (or implicitly Em/oy-ratios) lead to a translation of the Rc(Tm)-
curve along the positive direction of the Tm-axis with a corresponding increase of the
(negative) Tmpl-temperature.

sir s/,
0.2 " "
0.08 - 0.08
0.35
T,
f
—l‘ﬁ- =01
0.0 L 0.04
T C T C
-100 -50 -100 -50 v
a) Em/Ef=0'25’ Av=0.04 b) Em/Ef=0'25’ rf/rm=0.1

sleg
- 0.08
-0.04
o Tm'°c
T T [
-150 -100 -50

c) r'f/rm=0. 1, Av=0.04

Fig. 3: The s(Tm)-dependence for different parameters

a) fibre volume fraction ; b) Poisson's ratios difference ;
c) Young's moduli ratio (in all cases valids l/rm = 0.3)



212

Fig. 3 proves that the influence of the same set of parameters on the s(Tm)-curve
is similar to that for the Rc(Tm)-curve. But in contrast to the latter case the s(Tm)-
curves are concave. In other words the plastic zone length s is more sensitive to the

temperature changes than the Rc-radius.
s/t

+ 0.08

- 0.04

-150 -100 -50
Fig. 4: The s(Tm)—curve for different crack lengths 1
(Em/Er = 0.25, Av = 0.04, rf/rm = 0.1)

The explicit s(Tm)-dependence for different crack lengths 1 is depicted in Fig. 4.

The graphs are comparable with those from Fig. 3a.

/
>/Tm T =-100/-90 / -80
0.03 -
0.02 -
0.01 1

Fig. 5: The s(l)-curve at fixed values of Tm [°C]
(En/Ep = 0.25,  Av=0.04, re/r = 0.1)
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Further, Fig. 5 illustrates the s(l)-dependence at fixed Tm-values.

From the results shown in the figures 2 and 3 one may immediately obtain the
length (rm-l-s)—RC , cf. Fig. 1, of the elastic ligament between the two plastic zones
as a function of the parameters involved in these figures.

5. CONCLUSIONS

The results obtained above form a sound basis for a detailed quantitative study of
the cell and crack behaviour, It is a matter of an additional computational effort only
to extend the figures 2-5 over sufficiently large intervals of those parameters involved
in them. With such an extension and with an appropriate crack growth criterion one
may almost straightforwardly derive corresponding Tm—and I-bounds for a save behaviour
of such a cracked composite microcomponent. At the same time, the failure modes and
the instants of their occurrence for a given cracked composite microcomponent can be
predicted.

Finally, it is hoped that the very approach to the problem considered may prove
itself to be a wuseful first step to the investigation of the interaction between

longitudinal macrocracks and the near crack tip fibres in a fibrous composite.
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ON THE EFFECTIVE YOUNGS MODULUS OF ELASTICITY FOR POROUS
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PART I: THE GENERAL MODEL EQUATION
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Summary

The determination of the effective moduli of elasticity represents one of the most basic tasks of

materials science on composite materials nowadays. There are two concepts used to date for this

determination, which are

- the bound concept using variational methods in which the averaged values result from the
principles of the minimum of elastic potential and complementary energy.

- the model concept using direct methods in which the averaged stresses and distortions are
calculated with the aid of Hooke's law.

Whereas the bound concept provides upper and lower bounds, between which the effective
Youngs moduli of elasticity have to be expected, the model concept results in single
approximate values via an effective Hooke's tensor.

Based on the model concept the present paper treats the problem of the effective elastic modulus
of porous materials, considering materials with closed porosity as a limiting case of two-phase
composite materials.

The derivation in this theoretical first part starts by assuming a two-phase material with matrix-
type microstructure, where the two phases behave isotropically. In order to simplify the
calculations it is presumed that the following proportion is valid between the elastic moduli of

the inclusions (vp, Ep) and of their matrix (v, Em):
voEm=vMEp

which, as a limiting case, exactly holds true for porous materials. - The two phase material then
is subdivided into elementary cells (finite elements), where the elementary cell consists of a
cube of given elastic materials in which spheroidal inclusion in any orientation are
discontinuously embedded in a matrix phase. The mean stresses and strains are calculated for
this elementary cell by dividing it into small, disjunct prisms. An effective modulus of elasticity
is approximately calculated for each prism. The final effective modulus of elasticity is
determined on the basis of a new averaging over all prisms. The resulting analytical formula for
the effective Youngs modulus of elasticity depends on the elastic moduli of the phases on the
phase concentration as well as on the axial ratio of the spheroid and its orientation. If in this
formula the modulus for the inclusion is assumed as equal to zero, then the effective modulus of
elasticity of porous materials is obtained as a function of porosity and pore structure.

The second part of the paper , published elsewhere in due course [2], is concerned with the
theory of special and limiting cases of the model equation and a comparison between
experimental and calculated Youngs moduli of elasticity. The comparison is made for porous
glass and porous calciumtitanate ceramic and - summarizing - for experimental data of sintered
metals and ceramics with spherical porosity taken from the literature.
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1. General description of the model

Let a spheroid € (rotational axis x3 = 2b, secondary axis x;, x = 2a) be given in the space

(x; =D, xo=Q, x3 = %) In this space, let a cubic elementary cell W be located (see also Fig. 1)
with the edge length /, which for its part encloses the above mentioned spheroid of revolution.
The centres of gravity of the spheroid and elementary cell coincide on the common origin of
coordinates O of the coordinate system X = O, x3, X, X3 of the cube and ' = O, xi, X2, X3
of the spheroid (see also Fig. 2). The spheroid can take on any orientation denoted by ¢ = o,
oy, 03 , i. e. the rotation of the coordinate system X' with respect to the coordinate system X
about the centre gravity is determined by the angle Q.

Let (Ep, vp) be the modulus of elasticity or the Poisson transversal contraction ratio within the
spheroid and (Ep, VM) be the corresponding values outside or in the residual volurne of the
elementary cell W. In order to determine the effective modulus of elasticity in the directions

xi (i = 1, 2, 3) of the elementary cell, the present symmetry ratios permit an exclusive
determination of the modulus of elasticity Eqy in the direction of the coordinate x3.

1.2 hematical ipti athematical model
Let the tensor field of the stresses ¢ be

011 012 O13
0=| C12 022 O23

013 023 033

|
R\

Fig. 1: Spheroid in cube Fig. 2: Definition of the Fig. 3: Single prism
direction angle



216

Let the vector field of the displacements u = (u3, uz, us) of the tensor field g be determined in

such a way that the equilibrium conditions
0 Oijj

=0, (,i=12,3) )
0 X;
and the law of change in shape for isotropic linear elastic bodies
ou; (c v ( + )) 2
a_—m 11~ Vp,a\%22F O33 @
X (with permutations)
. E
and with G =
2‘1 +v)
1{9u; duy; 1 ..
s|—+—]= c.. for i#j
2(8 x; ox;) 20bm Y
are valid within the cell W.

The following conditions of continuity must be observed at the surface d¢ of the spheroid:
oynilec =oimlae » Ullge =UMige 3)

Here n; (i = 1, 2, 3) denotes the componenfs of the normal n . Furthermore, the following
boundary conditions must be fulfilled on the surfaces of the cube an , oWE g0 8W
o11 lgwt = O12 lgw, =013 lgw, =
O12 Ianx =0y Ian2 =03 |8Wf3 =0 @)
013 lgw, = 023 lgw, =033 lhwt, =10 '“
Let the following be valid by definition for the effective modulus of elasticity
Et= Lo ” Lodxydxp with E33=(us(x1, x2, £2)- us(xy, xo -02))/

W €33

It is not yet possible to obtain a precise solution to this problem. In order to be able to
implement an approximate solution the following modified problem is substituted for the
problem formulated above, with the equilibrium conditions (1) remaining unchanged: the
constitutive laws (2) are replaced by the relations

du 1 . .
5:?§=1—3§ G35 ; 0 = aij for G, j) # (3,3) )
outside tlg)e spheroid and
Uy 1 . _1_ au, au}
o= " Ep (c“ - vﬂ(ozzdr 033)) 2 (ax, | 2 G 5 0;j for i# ©

(times all permutations) inside the spheroid.
The conditions of continuity (3) and the boundary conditions (4) remain unchanged.
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A problem modified in this way can be described as follows from a mechanical point of view:
the continuum outside the spheroid is replaced by prismatic fibres running parallel to the x3
coordinate. However, this mechanical model also represents the borderline case of a division of
the elementary cell into finite volume elements. The effective modulus of elasticity of the cell is
reduced by this substitution. Let Z;, ..., Z, be the number of disjunctive prisms filling the
entire elementary cell. Those part of prisms located inside the spheroid are denoted by Zk) and

" n

those outside by x . The"+" sign denotes the upper portion of the prism and the "-" sign
o)

the lower portion.

Inside each prism the penetrating surface of the spheroid is approximated by the plane Eg (or
Eg see also Fig. 3).

The original prismatic bodies Zk ) and Z;‘z(o) are thus approximated by the prismatic bodies
Zgy and @0) respectively. The position of the planes Eﬁ is determined in such a way that
volume (Z((i)) = volume (Zg(;)) and volume ( in(o) ) = volume ( Zliqo) )y D

The original mathematical problem is modified as follows:
The equilibrium condition (1) remains unchanged. The constitutive laws (5) and (6) are valid in

%o) with (EN, vm) and in Zgg) with (Ep, vp) reSpectively.

The conditions of continuity (3) are reduced to
D=5 and it =g ®

No continuities are assumed between the prisms Zi(o) .

In order to solve the problem modified in this way, let the following homogenous state of stress

be given:
000
c={000]. &)
000
In accordance with the constitutive law (6) the distortions
1
=€yy=-YDG ; €1a= =0 ; E,=E€;21=£,,=0 10
€11 =€22 EDO‘ 337 Ep 125 %13 %23 (10)
and the displacements
Vp Vp 1
u1=-E;0x1 H “2*'@0"2 H “3=-E—D0X3 an

correspond to the stress field equation (9) within the spheroid.
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Outside the spheroid, it follows from constitutive law (5) and the continuity condition (3)

u3=-E1;0x3-0(ﬁ];--ELD)Zi(XI, X2) 5

where (x1, X2, Z+ (x1, X2)) denotes the coordinates of the intersection of the straight lines x; =
const., X = const. with the upper or lower surface of the spheroid, respectively. The
displacements on the cell surface d Wﬁ, in the direction of the x3 coordinate are then
determined as

1 ! 1 1
“3("1’ X2 [/2)= ]‘3;07 ) G(E\;'EB)ZJ'{XP Xy,

1 [ 1 1),
u3(x1, X2, -[/2)---?3—1;02 G{—E—I\TET))Z (k1 x9) -

us(Xy, Xg, £2)- us(x1, x4 ,-172)

The average elongation 33X X = 7
is then written with C(x1, x2) = Z' (x1,%7) ‘[Z_ (x1,%2)
as €33 (X1, X0) = -1— o - (—L J—) o C (x1, x2)
The effective modulus of elasticity is written with the aid of the definition
173
1 1 7z d
Eef= 0O dx; dxy as Egr= 3 dx; X2 — (12)
‘ [2 B{L ) 1 (L. L C(x1,x2)

% -[/ZEI»T(EM Ep

Let the homogenous state of stress (9) be given once again to determine the coefficient C(x3,x2).

Within the region set of all prisms Zx(j), the formulae (10) and (11) are valid for the strains and

displacements. Outside this region set, the strains are determined by

v
= Mg o 1 o o
fn=€n=f 0 5 &3 g 0 €12=€y3=8;3=0. (13)

The corresponding displacements thus follow as

\Y v
ul___._]\'ioxl ; uz—-—MGXQ you _—l—cx +0—1" 'J_
EM EM 3 Em 3 ZK(O)

where @0) denotes the coordinate of the upper or lower plane EK . The mean elongation of a

cylinder is formulated with
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o = B(2)-wlr) o o1 +(_l_ 1)601(

3 Em  \Ep BEum

+ -
Furthermore, with Ck= Z-Zg

[
the effective modulus of elasticity follows as
Eq=1 i S(EK)
@ =1 [ B+ - o] s@o il 1. 1) 04
Eler 12 Kol Em \Ep Em . K=1 E ED EM

b

where S(Eg) denotes the surface of the plane Ex . The coefficients Ck and the areas S(Eg) must

therefore first be calculated in order to determine the effective modulus of elasticity. The relation

Z¢ - Z; vol (ZK(i))
Ce=2K- 4K _ 15
K 7 ISCE (15)

follows from equation (7).

The volumes vol (Zgg)), the surfaces S(g) and from them the coefficients Cx can be determined
as follows for a special type of cell division. A special system of elliptical coordinates is defined
in order to be able to describe this particular, discrete division of the elementary cell.

As already mentioned and as can also be seen from Fig. 2, the coordinate system 3" = {0, &;
&2, &3} with respect to the coordinate system Y, = {0, x1, X2, x3} is described as follows with
the aid of the direction angle.

—_— —_—

E1(cos y1, cos 2, cos y3) . Z:,z(cos 9, sin ¢, 0) . E3(cos ay, cos az, cos o3) (16)
. . n < < x 3
The restrictions "3SV¥S3 | coszai+cos2a2#0 an

are introduced for the further formulation without any limitation of the general orientation of the
spheroid.

T »
In the case oy = 0y = 7, the trivial case £ = X is valid. The angles v, Y1, 3 and y3 are

now determined. If one takes into consideration the fact that &; = &; x &3 then the following is
obtained

cos Y1 = sin @ cos oi3; cos Yz = -cos P cos 03
and

cos Y3 = -sin @ cos a1 +cos D cos o .
In addition it follows with §3J- §2

cos @ cos o + sin @ cos o3 =0 (18)
from which the following is obtained
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Cos 04 COS 0Ly

sinp=- ;cos P =- (19)

2 2 2 2
VE')S a1+cos a2 'J(TOS a1+cos (XZ

If a general formulation is applied
xi=ngbg: &=nkxg ; x=NE ; E=Nx (20)
then the transformation matrix N follows with equation (16) and equation (18) as
sin@®cosq3  -cos P cos o3 -sin @ cos o1 + cos P cos o2

N= cos @ sin @ 0
cos ol Cos 012 COS O3
or with N1=NT =N 2n
_ sin @ cos o3 cos @ €os ou1
N =( -cos @ cos a3 sin ® COS 02 )
-sin @ cos o1 + cos & cos o2 0 cos o3

The equation for the spheroid of revolution is in &1, &2, &3 with the principal axes a and b (see
also Fig. 2.)
1 (g2 62) ¢ LE2= (22)
2 (&1 + 52) * E3=1.

After several computing operations the desired formulation of the spheroid equation (22) is
obtained with the aid of relations (19), (20), (21)

1 (1 _1)cos? 2 1 (L _1)cos2? 2
[ +(b2 az)COS a1] X]'l'[ +( 2 2)COS Oc2]x2+

a2 a2 \p2 a
1 (L _1)cos? 1.1
+ [a2 + (b - a2) cos oc3] x5 +2 (bz a2) COs 01 COS O X1 X2 + (23)

+2(I)12—--12—)cosa1 Cos 03 X1 X3+2(B12—--12—)cos Olp COS O3 Xg X3 =1
a a

With xq = X, X2 =y, X3 = z and the expressions

1 1 1 2
A=—2-+(—2‘-—5)COS O,=0
a b” a
B(x,y)=(51;-—1§-)(cos 01 COS O3 X+Cos Oip cos a3 y ) =P x + P2y 24
a
=[L (L1 cos2 2 [ L (L. 1) cos2? 2
C(x,y) [a2+(b2 az)cos al]x +[a2+(b2 az)cos ocg]y
1.1 -
+2(b2 az)cosalcosazxy 1

= Nx2+py? +21xy - 1

the spheroid equation becomes
Az2+2Bx,y)z+Cx,y)=0 (25)
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The solution of the quadratic equation for z provides

_-B(xy) £VB2(x,y)- AC(x,y)
- - (26)

The z coordinates of the intersection between a normal to the x-y plane and the spheroid can
thus be directly determined for all possible points (x, y). However, the description of the

projection ellipse in the principal axis system (x , y)is of advantage. This coordinate system
{x, y) situated in the x-y plane is rotated by the angle y” with respect to the x-y system. y” is

determined by the eigenvalues of the corresponding quadratic form of the projected spheroid.
To this end, the discriminent in equation (26) is put equal to zero, thus

B2-AC=0 @7)
With equation (24) and
poav)  Bisen) [n-er)
1~ %Y 2" 03 270y
p=-—mmm 3 g=-;— y I=-—m—— (28)
o o a ,
it follows from equation (27) px2+2gxy +ry2=1 (29)

The eigenvalues for the quadratic form equation (29) are determined as

_pHrk \l(p-r)2+4g2

Mo 5 (30)
and the resulting principal axes in the (x , y) system as M , " .
The associated angle follows from tan 2 ¢’ = 28 (1)

p-r
The principal axes of the ellipse in Fig. 4 follow from

2 2 1T
AX +A,y =1 1/1 and , / i 32
1 X 2y as M Ay (32)

If the coordinate system shown in Fig. 5 is now introduced then - starting from the
discretization of the projection ellipse - the discrete volumes of the spheroid can be derived:

Fr-———=—=—-=—==-=-- =
! |
| Yod |
I 3 [
[ |
| x| % ¢ !
[ |
| / Xba) |
[ [
[ [
[ [
b oenn el aanmans J
Fig. 4: Projection of the spheroid Fig. 5: Example of discretization

on the x-y-plane



222

Let the following be valid with the parameter ©

x—,\/ifpcose P V= ,‘/ p sin©® (33)
1

Furthermore the following is valid
0<p<1; pm=—§;—(m=1,...,M) ,

0<0<27; e§‘=2ﬁm(n=1, v Nm) » (34)
m
po=0 ; €5=0 ; VI=V(Am) .

With equation (26) the volume of a cylinder with the base App within the spheroid becomes

vi=2 [ +/B(x.y)-AC(x.y) dx dy. (35)
With equations (24), (28) and (32) it follows from equation (35)
—-2
vm_v—K—Ajr{wfl AR+ 272 dx dy - (36)
with equation (33) it follows
dxdy=—J1—pdpd 1)
y Vo, pdpay
and thus from equation (36) one finds
o | e
m pV1-p2dpdo=—0-n=L1 p«1-p2dp. (38)
VK VA122 A ” P Aian ) P

After a further integration, the partial volume follows with equation (34)

Y I B o

YA Yarrp

If one now considers a special example with Ny =1, Nz = 8, N3 = 16 and M = 3, then the

partial volumes are calculated as

4 0.161 V2 _T_ 042 0.42 V3 0.437

T A T Tadhn, VT2 TR VA,
In order to determine the coefficient Ck equation (15), it only remains to determine the surface
S(Amn) = ST of the partial cylinder in the x-y plane (see also Fig. 5). The following is valid
with the functional determinant in equation (37)

Vi= 6=

n
. (40)

sp= || axdy=

Pm Op
1 d de = -0 (e -p2) @D
I WLMJ Ll 23

or with equation (34) '
sp -1l 22 [mp- (mef] @

It therefore. follows in accordance with relation (15) to the volume constancy with equation (39)
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and equation (42)

ap=t V 1'(m_1\;[L)2)3 ) (1 '(’]\!%)2)3 43)
(- .

If one then returns to the example given above then the following values can be calculated from

equation (43)
c—1992 ,c_—168 ; c 1.04 — 44
1 7/—[ 1-8= V— =7 1-16= V_ =7 44
According to relation (14) it thus follows for the effective modulus of elasticity
2-
Ep Em 7\:1 A2 ﬂ
Eer = + 45
TR el nilED +op (EM Ep) |’ “3)
3. General model equation for porous materials
With the relations (40) and (44) contained in the example, the following is obtained from
relation (45) extended by "/" (discrete distribution M=3,N;=1, N2 8, N3 =16)
Ew_1._ = [;. 1 .
Em 2V 9(1 LS?.EM-]} 3(1 _.QB.{_M_ 1} 2 1 104 Eum _ 1}
" (+NK Ep ) (+N" Ep ) N ) (46)

The equation shows that the normalized effective elasticity modulus Eef/Ep is a function of
EM/Ep but not of an absolute value (Ep or Ep).

Two expressions contain the microstructure data: £YA and £ Aydy:

2
[ﬁ\_ = -aL v 1+ (-ta;-z- - 1) 0082a3 (47a)
2
from which with -b- =Xk and 2T ‘; b it follows

3 = v 1+ ")2 | cos2au

V3 ’ (47b)
2 2 2
BB

oA

(48a)

with
2

[2[512_(:12)/3 2/(k 1) cos 2 0052a3

3CD

, (49a)
1+(k - l)cos [ 29
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By = (415 ) @ k'2/3 [1+&2- 1) cos?ay], (49b)
2.2 2
fﬂz ._-(i“_ /3k2/3 k-1 ;:os azczs o ’ 9)
o D 1+ (k"-1)cos"og
Byq,= (41‘: ) s K% [1+@®2- 1) cos2ay) , (494d)
°D 2
12[3 B, (’4,,;\‘/3 2, &= 1) COS0L; COS O, COS oc3 %)
, e
o 3cp) 1+ (k -1) c:oszcc3
Pyy = ;:3_1;) & K% (k2 - 1) cos o cos o, , (490)

4azb
3/

where k = F is valid and the conccntrauon is denoted by cp=

Substituting equation (49) in equation (48a) results in

S

2. 2 2 |
[ (<2 1)° cos?oy; cos2a -1-(k2-1) cos2ay
i 1+(k2 1) cos2a3

2 2.
B, = (5“—) B2l &2 ) coslogcoslay s g 1)0052“2} (48b)
3cp 1+ (k2- 1) cos2o

2
i (k2 1)%c0s0; cos o cos203 -2~ 1) cosoy cosocg]
B 1+ (k2 - 1) cos2az |
If one designates EZJT =X . (50
and
H=(2-1} cos?oycos?0i3 '(X + cos’al) (cos’azcoszag ; (x + coszaz))_(cos’a;coszazcoszm -~ Oosazﬂ (51a)
X + cos?03 % + cos?aiz % + cos?ol3
2

then the following is valid EAMads = (ﬁ-g;) H. (48¢)
Equation (51a) can be transformed further:

H=(k2-1f (x + cos2a1) (x + cosZaz) - cos2cos2o, - ——R— |

(x + c052a3)2

R = cos?a;cos2oi, (x + coszaz) + cos20,cos20ty (x + coszal) — 2cos20,;cos20,cos20.3,
(51b)
from which it follows

=- _(1‘_2_'_1_).2__{(1 - cosza3) cos2ouy + (k2- 1P [X2 + X(l - 00520‘3)]} =
X + cosZai
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=- _(_lf_'_l)_z_.{(l ~ cos20) cosar; + (k2 - 1)[x + 1 — cos?ay)} =

X + cosZo,;
— COS2 2
=(k2 - 1) {1 - cos?a3) _ (1.~ cos?a;) cos?a; _
% + cos20,
2
=(2-1)+(1- coszag)(l - _Los03 ) =
X + cos203
= (k2- 1)+(1 - COSZ%) =1 +(1 - COSZ%) =X+l (51c)
X + cos?ouy X +cos2o;  x +cos?o;
—1 1

H=_K-1 - k2

or 21 cos203 1+(k2- 1) cos20, (51d)

k“-1
3
and thus EVAA; = A/ (—4—3—)2 k
3cpk V1 +(k2-1) cosZa;

3 2 3
[ 4x ] [4
= k (3 CD k) = k E—E%)z , (48d)
V1+(k2-1)cos2a; V1 +(k2- 1) cos?as
374 Jxlan
2, = z (EEED'%)Z _ ”);'(?ED&) @)
\/1 +([1‘z—]2 - 1) cosZa; VI +([§]2 - 1) cos20t3

i y
» [{A‘:V 3—31';“) '\/1+,({§]2_1)cos2a3 . (47b)

Vi

The pore case (spheroidal pores) corresponds to the borderline case (EM/Ep) --> o< . It then
follows from equations (46b), (47b) and (48¢)

Edf:EM(l " —|=Em 1-“'\/1 +(&F - 1) cos?osy

P [ xlan )2 (52)
Z\3¢cp
Since the spheroid of revolution cannot completely fill up the space, equation (46b) is not valid

throughout the entire concentration range. The maximum concentration depends on the form
and orientation of the rearranged phases. The following is valid, for example,
- for spheres cp = 0.52
- for directed cylinders (cylinder axis parallel to the cube edge of the finite element)
cp = 0.78
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In treating the microstructure-field property relationship, the validity of the model equation was
achieved by the principle of schematic differentiation [1], which however in the present case
fails due to mathematical difficulties (cp with exponent cannot be treated as a differential).This
is, why the problem has to be solved approximately by a first, engineering approach: forcp =1
the normalized effective Youngs modulus of elasticity for porous materials should be zero

( %@5 =E,=0), but equation 52 provides

Eeff _1.1.21 Wl +([§]2 - 1) cos? 03 . cp3h (52a)

Em VXE

Substracting this term from equ. 52 and observing,
- that this "compensation" should reduce strongly according to experimental results with

decreasing porosity
- that the cxponent% is offered for the porosity by the derivation of equ. (52).

the model equation for porous materials as a I. engineering approach follows as

ity g [ LHEF - eoses “oh|1-121 Rl CRDETT| e
Em 3 2&[-1_]2 X
Z|Cph Z

Limiting cases for this equation as sphcrical; needle and disc shaped pores, its convergency
with the bound equations and the comparison of calculated and measured Youngs moduli for
porous materials are treated in part II of the paper [2].
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1 Scope of the presentation

Due to the anisotropic and inhomogeneous microstructure of brittle materials such as ceramics, fai-
lure phenomena in this class of materials are attributed to elastic damage caused by stress induced
microcracking. Generally stress induced microcracks develop from microcrack nuclei, specifically
in the regions of high macroscopic stress concentration of the elastic stress field ahead of a critical
crack or notch. Microcrack nuclei are characterized by specific microscopic stress intensity factors
(MSIF), which are induced by residual stresses of the second kind of microstructural features,
such as pores or triple points of grain boundary junctions. These residual stresses are mainly
due to thermal expansion, mismatch of grains, phases in facets, or to phase transformations. The
magnitude of the MSIF depends on the square root of grain boundary facet length, which are
statistically distributed in the volume of the microstructure, and can be experimentally quantified

with a quantitative microstructural analysis.

Corresponding to the nature of the MISF’s of the nuclei, their statistical distribution, the vo-
lume, the loading, and the environmental conditions, a more or less anisotropic microcrack field
develops in a process zone ahead of a macroscopic stress concentration during monotonic loading
above the elastic limit. Due to the microcrack porosity, which is characteristic for elastic damage,
the dilated process zone is equivalent to a material with different mechanical properties, with
respect to the safe undamaged surrounding material.

In previous works it was shown [1,2] that at a critical microcrack configuration some favora-
ble oriented microcracks join together to or with a macrocrack, which induces local unloading of
the process zone. This instability criterion is equivalent to a critical strain energy density of the
damage zone. Thus, monotonic loading of a component causes subsequent unloading, reloading
processes of the crack region, and a quantized macrocrack growth in discrete steps. This is expe-

rimentally observed by different methods [3,4].

In this work we will give additional theoretical and experimental contributions to previous re-
sults. This specifically concerns the influence of residual stresses of the first kind of the dilated
process zone, which are a consequence of the quantized crack growth. It will be quantitatively
shown that the release rate of the residual elastic strain energy of the process zone, governs the
crack resistance of this class of materials during crack growth.
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2 Elastic damage in a nonlinear deformed beam.

2.1 Influence of elastic damage on the elastic and inelastic strain
energy during bending.

From numerous experimental observations it is obvious [3-6] that a beam of a ceramic, typically
for alumina loaded by an end couple, shows a nonlinear nonelastic response. Thus, a bend beam
of a DCB specimen goes partially inelastic, and the applied moment along the beam, uniformly
produce an elastic core of height ¢h on either side of the neutral axis, and an inelastic outer layer
(1-O)h (fig. 1). The free length of the beam is equivalent to a crack of length a. In partially elastic
damage materials, the elastic parameters in the elastically deformed core are different than that

of the inelastically deformed outer layers.

As mentioned, the inelastic deformation is due to stress induced microcracking, which arises
locally, if the superposition of the microscopic stress intensity with the macroscopic one reach
critical levels. This will first happen during loading in front of a critical microcrack nuclei with
the highest MISF’s, however, the largest grain facets break first. The damage process continues
with increasing load, and more microcrack nuclei with decreasing MSIF are involved in the micro-
fracture process. This process is finished at a critical load, if the microcrack configuration reaches
a critical situation, where some favorable oriented microcracks join together, and the energy den-
sity in the damaged region is extreme. At this mechanical state the macrocrack grows. From
experimental and theoretical observations it can be concluded, that the critical volume density of
microcracks is somewhere in the range of 20% [1,7]. This is nearly equivalent to a density of a row
of parallel oriented cracks of 50%. It is obvious that elastic damage changes the elastic properties
in the same magnitude, and is assumed to be homogeneous in the damage zone. Thus, an elastic
mismatch arises at the boundary of the damage zone. .

The mechanical problem was evaluated for a glued, plastically damaged cantilever beam by A.G.
Atkins and J.W. Mai [8]. It will be extended in this work with some constitutive modifications

for an elastic microcracking material.

The stiffness of the elastic damaged beam is not the same as the fully elastic beam, due to
the fact that damage in the outer layer change the volume. However, despite the fact that Hook’s
law did not hold, it is assumed that plane sections remain plane, and the stress strain diagram of
the damaged layers of the beam for tension and compression are the same, that is, the neutral axis
of the beam crosses the center of gravity. The.- specific microstructural processes characterize the

elastic limit of the material.

Due to the fact that the Young’s modulus of the outer microcracked layer changes from E to
E,., the rotation of the elastic and inelastic deformed sections of the beam are not the same,
and unloading/loading lines are not parallel to the initial stiffness line OY. The work area OYGF
represents irreversible inelastic work Uy;,s, required to build up t};e microcracked zones in the
beam of constant length a, to the level given by the appropriate P or M, and in addition it will

be shown that area OYGF contains residual elastic strain energy as well (fig. 2).
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Figure 1: Deformation of an elasto-plastic beam
a  Stress distribution across the beam depth with the regions of elastic and plastic bending
b Rotation of an elasto-plastic beam
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Figurc 2: Load-displacement curve with incremental crack growth Aa at constant load
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To get a material specific formula for failure of the beam, we will look for the strain energy
densities, which, during inelastic deformation of the beam, contribute to the energy release rate
during fracture. This is different for the propagation of a crack without elastic damage. We will
identify the damage model with a brittle material such as a coarse grained ceramic, which shows
stress induced microcracking during monotonic loading, beginning at and beyond the elastic limit.

In the loaded beam, a inhomogeneous elastic strain energy density develops in the pure elastically

deformed core, and with the notation of fig. 1, is given as

S2 2
Om Y )
2E (%h?
whereas, in the nonlinear deformed microcracked outer layer, the elastic strain energy is constant at
52
Pm_ ()
2E,,

With these formulations it is assumed, that constant homogeneous cohesion strength S,, is valid
for the boundaries between the elastically and inelastically deformed zones of a beam with Young’s
moduli E and E,, < E, respectively. The reduced Young’s modulus is assumed to be homogeneous
in the inelastically deformed outer layers of thickness ¥ = (1-{)h, where 2h is the height of the
beam. Then, with a constant cohesion strength of S,, of the material, the moment of the beam is
given [8] by

Bhon g ©

The total elastic strain energy of the beam at G in fig. 1, which is stored in the elastically deformed

M, =

core and the inelastically deformed microcracked layers, follows from fig. 2 with equations (1-3) as

a +¢h 202 h 2
_ Y’Sm Sm
U(;—B/0 [‘/_& E112E + ./€h22Em} dydz (4)
With the parameter
-1
(=1-+ (5)
equation (4) is written after integration as
BS? ha v 3E-E,
vo= g (1% ) ©)

On the contrary, the elastic strain energy during bending, which is area OED in fig. 1, follows
with equ. (3) as

Ui =— )
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With the curvature of the loaded beam and the moment of inertia I, given as

1. 6 M 3 M

p=a"El = 3 TBR ®
it follows for the strain energy of the beam
BS2h
Uy = Bl (1 + 2%) ©)

thereby neglecting terms of high order. After unloading from G, the recovered elastic energy is
given by the work area OGF. This is smaller than the elastic energy, which is stored at G by the
amount of résidual elastic strain energy, which is still contained in the unloaded beam at F, and
is given as

BS:a, E-—E,
7 & (10)

During microcracking, energy is dissipated in the dilated process zone. The work done per unit

Ur=UG_UeI=

volume is [Snde. In the inelastic region |y|> ¢h, the total strain is

Smy
..t (11)

The inelastic strain is the total strain, less the elastic strain at |y| = ¢h, which is }—‘g”':, and for the

€=-:'i=
p

dissipated energy we obtain

a ph Smy Sm
Udiaa = /Wdisad‘/zliaa = 2B[) /yh Sm (Emfh - E,.:) dyda: (12)

Integration yields

BS%a ,
hE,, 4

Udl'u = (13)

thereby neglecting terms of higher order.

From the previous section it is obvious, that after unloading of a nonlinear deformed beam, a
high amount of elastic strain energy is still stored in the beam. The amount, which depends on
the strain energy difference between the elastic damaged process zone and the surrounding safe
material at the constant cohesion strength S,, which is the ultimate uniaxial tensile strength
of the material, and arises in the volume of the process zone during incremental crack growth.
Thus, the experimental and theoretical results clearly show that damage and failure of nonlinear
elastic materials are associated with residual stresses of the first kind. Therefore, a concept for
the constitutive description of deformation, including damage and failure, cannot contain a yield
condition modified to account for the microcrack porosity. This contradicts the evaluation of zones
of residual elastic strains during deformation, and the character of the ultimate tension strength
Si of the material. Failure of nonlinear elastic materials seems not to be dependent on a global
energy criterion. Experimental results of damage, and failure of nonlinear elastic materials show
therlocal characterrof suchreventszAs will be shown in the next section, the crack stability of
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nonlinear elastic materials is governed by the capability of the material to store a high amount of

residual elastic strain energy.

2.2 The microcrack induced residual strain energy release rate as the
effective crack driving force.

For otherwise identical beams with different length, which are the starter crack length, the OYGK
loading traces are different on a MO-plot (fig. 1) because of the different starting stiffness. In
terms of a J.-criterion for initiation of instability, the areas under MO curves at various G would
be plotted against the crack area, and J determined from the slopes. J. would be the value of J,
at which fracture initiates, since the cracking moments at G are known, and they are independent
of crack length. However, the rotation at which they occur depends on the starter crack length
a. For plastically damaged materials this was exemplified in detail by Atkins and Mai [8]. For
elastically damaged materials, the total elastic strain energy, which is stored in the specimen at
crack initiation, follows equ. (9-12) as

Ug = Uy + Usiss = Ut + U, 4 Uliss
BS%a  (h , 3E-E E ¢ (14)
= =3B ¢($+“E;:”‘+E;:.)
This equation shows that the total elastic strain energy Ug mainly depends on two terms. In
addition to the size of the damage zone v, one is related to the more global geometric parameters,
whereas the other depends on the relative change of Young’s modulus due to damage.

From theoretical evaluations, given by Kachanov et al. and others [9] about the influence of
microcracks surrounding a macroscopic crack tip on the stress field, it can be concluded that only
the very near microcracks at the crack front influences the SIF. Therefore, the size of the total
damaged volume has a minor influence, and only the density and the elastic interaction of the
nearest microcracks is important. This can also be concluded from experimental measurements
about the distribution of microcracks in the fracture zone of an alumina specimen by small angle
X-ray scattering (SAXS) by Babilon et al. [10]. As can be seen from first results, the size of the
damage zone does not vary remarkably with the rising crack resistance during stable crack growth.
Therefore, the elastic crack driving force of an elastically damaged material can be expressed by

a local criterion, given by the residual strain energy release rate in the following form

St E-E,
t & 7 (15)
thereby neglecting terms of higher order in ¥/h. With equ. (15) the instability criterion is given

Jres =

as

oo _ 5 (en—e) (16)

da T
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therefore, fracture occurs at a critical CTOD of the damage zone [2]. Equ. (15) also follows from
the path independent J- integral in the formulation given by Bui and Ehrlacher [11], which was
explained in previous works (1,2].

3 Crack resistance at crack initiation

In previous papers it was shown [1,2] that the crack resistance of elastically damaged materials
can be expressed in terms of the total elastic strain energy of all microcracks with a mean length
of 2a,,, which are generated in the damage zone during an incremental crack growth of Aa. The
elastic strain energy density of one microcrack is 27/2a,,. Then, with the volume density of
cracked facets 3, the total released elastic strain energy in the volume of the process zone during

an incremental crack growth is given as

Aa  p+y 2
Un=B / / =Y dyde 17
o )y 2 17)
and after integration we get
Zy

m

The microcrack induced elastic energy release rate equals the change of the residual elastic strain
energy (equ. (15)) in the volume element B21pAa. With equ. (15-17) we obtain a formula for the
cohesion strength of the damaged zone in the following form

2vE
aﬂl
which exhibits a Griffith term, and in addition with the second one, it characterizes the contribu-

Sm = I (19)

tion of the change of the residual elastic energy to crack growth, given as

(20)

Therefore, the cohesion strength increases with decreasing grain facet size, with the microcrack
density of a specific microcrack field, and a limited decrease of the elastic modulus. The term I,,
was introduced as the elastic interaction parameter, which includes the elastic interaction between

the microcracks and the macrocracks to the crack resistance [1].

Physically 1,, characterizes the ratio of the SIF’s of stress fields without and with microcracks
Ko and K,,, respectively, given as

K,
In = 2~ (21)

Then, for the fracture energy release rate in materials with elastic damage at crack initiation, the

Neuber/Irwin relation is written as

QCD'
I
IR
<

(22)
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4 Crack resistance during stable crack growth

Following experimental results, the stress tensor on the surface of the damage zone rotates up to
90° at instability due to unloading at a critical residual strain energy of the process zone. Thus,
the incremental change of this quantity follows as
oy d 53,,
and the crack resistance during stable crack growth is the sum of an elastic and an inelastic term
with equ. (22,23) as

(23)

2 E d S
GR““"/’(Hszd E«M (24)
This equation is equivalent to the following form
E
Tr=J(+ g5 T)) (25)

which was introduced by Paris et al. [12] with the tearing modulus

T;= %J (26)
Equation (24) opens the possibility to numerically quantify the crack resistance of ceramics on
the basis of a quantitative microstructural analysis, which can be introduced with the cohesion
strength such as grain size distribution, Gibb’s free surface energy, and residual strain energy due
to grain boundary mismatch. First results will be worked out in the next section.

5 Discussion

5.1 General remark

It is noticed that the previous analysis for the crack resistance behavior of brittle materials concerns
the apparent fracture toughness, due to the external work. In reality, the residual strain energy,
which is stored in the damaged fracture zone, generates an internal bending moment P;a = M;,
which contributes to the fracture work. P; is negative, as a consequence of the radial compressive
stresses inside the process zone. An external load P = -P; must be used to completely flatten a
beam. As mentioned in the literature [8], the internal work 1/2 P;u, must be added to the external
fracture work to get the "real” toughness. It is the internal bending moment which generates the
residual offset u, after unloading. In many cases P; is not constant during stable crack growth.
Therefore, the stress field on the border of the process zone is also not constant. This will be

exemplified in detail in a forthcoming paper.

5.2 Numerical equivalence with measured results

With the relations from previous sections, we will numerically argue that residual stresses govern
the crack resistance of elastically damaged materials. Thus, using physical and microstructural
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data of a material, we can compare measured macroscopic with microscopic parameters, which
are listed in the table.

For a first approximation we assume a value of the Gibb’s free surface energy v = 1 N/m and for
I, ~ 1, which is the asymptotic value if § becomes zero and E,, = E. With a mean grain size
of 10 gm and a size of the process zone of 100 pm [4,5,10] for a specific alumina, we get G, =
20 N/m for the elastic fracture energy release rate at crack initiation (equ. (22)). The cohesion
strength follows as S,, = 270 MPa. These values are comparable with measured values of similar
materials [1,4,5).

To estimate J,., and I, to a first approximation, a value of E,,, = 0,9 E [13] will be used. Then, the
residual strain energy release rate (equ. (15)) which, as a consequence, is due to local unloading
of a quantized crack step, and follows as J,es = 2,2 N/m. This value is in the range of the Gibb’s
{ree surface energy and confirms the local character of crack instability. It is noticed by Atkins
and Mai [8] that, although small, the residual strain energy has a pronounced influence on the

failure of plastically damaged materials.

With the elastic fracture energy release rate at initiation G,, and the residual fracture energy
release rate during stable crack growth, the crack resistance can be written as

Gr=G,+ Gres 21

Thus, with equ. (24) macroscopic and microscopic features can be compared with each other as
(3,6]

G =5 %
=RY=241I *
and
Gres =5 e
(29)

vE(Ee)=vi(zen)

Most important for the toughness of high tech ceramics, is the rate of the stored residual energy

Glyes, which shows up to the maximum load, a nearly linear dependency of crack growth Aa. Then,
with measured values of Gy.,, the total stored residual elastic strain energy, after a stable crack
growth of Aa, follows as

Ures = LAa éru da
= [ % du, (30)

= d(Zy 1)
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Table: Material properties of alumina

2a,, mean grain size [4,10], 28 Gibbs free surface energy, 24 size of process zone [4,10], E. Youngs’
modulus [4,10] Gy elastic fracture energy release rate at crack initiation (equ. (22)), Gre, residual
fracture energy release rate during stable crack growth (equ. (29)), S,. cohesion strength (equ.
(19)), G'res maz maximal value of the residual fracture energy release rate of a specific alumina
before and after thermal cycling [5].

crack initiation crack propagation
2a,] 29 E Sm | Inm
pm | N/m | GPa | MPa

20| 2 |365|270I1

Figure 3: Microcrack pattern in the fracture surface of a glass ceramic [14].
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From this we can evaluate a value of I,, which characterizes the crack shielding effect of the
microcrack field. As a first approximation, we will assume constant values of v,a,, and 7.

Tertel and Osterstock et al. [5] measured the crack resistance of the same alumina. After stable
crack growth of about Aa = 1,5 mm, a maximum value for Gg mas in the range of 130 N/m
was estimated. The respective value for G,., was found to be in the range Gres maz = 100 N /m.
However, this value decreases to 75 N/m after thermal cycling, due to microcracking which was
induced by the thermomechanical stresses. With these measured values, we can estimate the re-
spective values of I, to be 5.1 and 4.7, respectively using equ. (30) (see table). These values seem
to be high in comparison to a value of I,, = 1.6, which we can estimate, if we assume values for
the microcrack density and the reduced Young’s modulus 8 = 0.3 and E,, = 0.9 E, respectively.
Only with very high microcrack densities in the range of 0.5 and a reduced Young’s modulus of
0.98, a value for I,, in the range of 5 can be estimated. Thus, further work must be done to
clarify elastic damage in brittle materials. Besides the optimization of the analysis, this concerns
the numerical and experimental characterization of the effective microcrack configuration, which
governs the instability of the process zone, with respect to the stress distribution of the elastically
damaged beam.

As mentioned by Kachanov et al. [9], mode II microcracks have a pronounced influence on the SIF
of the external stress field. Fig. 3 shows such a mode II microcracks in the fracture surface of a
bend specimen of a glass ceramic [14]. From the hydrostatic point in the middle of the fracture sur-
face to the specimen boundaries, the microcrack density increases with decreasing crack velocity.
No microcracks can be seen in the middle of the specimen. In addition, the experimental results
clearly show evidence of an increasing R- curve for this material, which seems to be attributed to
the elastic interaction effect of the observed mode II microcracks with the macrocrack. Contrary
to, as shown by Saxs [10], microcracks in alumina are mainly oriented parallel to the ligament.
However, by using the decoration technique [14], mode II microcracks can also be seen. Thus, it
seems obvious from the analysis that elastic damage induces residual stresses, which governs the

crack resistance of brittle materials.
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Summary

This paper deals with the modelling of the inelastic thermomechanical behavior of micro in-
homogeneous materials within the framework of the classical uncoupled thermo-
elasto-plasticity without damage. At first, the local behavior of material is presented, follo-
wed by the global or overall description. A general approach to the determination of con-
centration tensors from the integral equation is proposed and next specialized for the case
of the self-consistent scheme. A few applications are presented concerning elasticity (eva-
luation of the overall elasticity tensor), thermoelasticity (local stresses, thermal expansion
coefficients,...) and elastoplasticity (stress-strain curves, residual stresses...).

Introduction

The evaluation of the thermo-elastic (linear) behavior of microinhomogeneous materials
such as polycrystals or composites was studied by many authors, for example Levin [1], Hill
[2], Kréner [3]. The theoretical solution of this type of problems is known. The question be-
comes different when dealing with inelastic microinhomogeneous materials. At first, plastic
strain is a supplementary source of internal stresses and at the same time, the ductility of
parts of the medium can reduce internal stresses by plastic accommodation.

The aim of this study is to evaluate the local stress fields in the microinhomogeneous solid
and to find the thermomechanical overall behavior of such kind of solids. The Medium is
considered as continuum, microinhomogeneous and macrohomogeneous. The uncoupled
thermo-elasto-plastic behavior is supposed and damage is not taken into consideration.
The mechanism of crystallographic slip is adopted in order to describe the plastic deforma-
tion of the matrix.

The general form of local relations is reviewed in the first section. In this approach, the tem-
perature acts by the intermediary of thermal expansion coefficients. Introducing the concen-
tration tensors linking local fields with the overall ones and applying the usual averaging
operations, the-overall behavior may be determined.

In the next section, an integral equation is presented allowing the determination of the con-
centration tensors. The self-consistent approximation of these tensors is deduced from the
integral equation. Finally, theoretical and numerical results concerning the behavior of
Metal Matrix Composites are presented. The overall elastic moduli and thermal expansion
coefficients as well as concentration tensors are determined for Al-SiC composites. Elasto-
plastic behavior and residual stresses are discussed for the same composite.
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Local ttuti i
The infinite microinhomogeneous medium of volume V undergoes a thermomechanical
loading defined by the state of overall stresses Z, the temperature 6 and the corresponding
rates X and 6.

At a point r of the medium, various physical mechanisms contribute to the total strain rate
Tnie -

g(nie.:

* The elastic deformation defined by the local stiffness s(r) and stress rates o(r)

& (0 =5, @ 6,0 m

* The thermal deformatlon described by local thermal expansion coefficients o j(r)

and temperature rate & assumed to be homogeneous through the considered
volume V

(r) o, @6 @
* The plastic deformatlon modelled by the Iocal plastic stiffness tensor P(r)
submitted to the local yield conditions

B0 =Py, ©5,® "
£(o, @) =0 and 2 c,>0

acij

The total deformation rate e T(r)is then :

e}; O=8O+E O+ efj © @
A more general case of a constitutive equation including phase transformation was given
by Patoor et al [4] and the form of P and f in the case of crystallographic slip can be found in

[5].
Introducing (1), (2) and (3) into (4), one has :

B ()= gy () 6 )+, () 6 ®)
where

&iia = Sijia *+ Pija

©®
The global thermomechanical constitutive law takes a form analogous to (5)
E =Gy }:kl +N; ] Q)]

Where the overall stress and strain rate % and ET may be deduced from the local ones by
the usual averaging operations
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a,-=vJ<" () aV=3,® ®

El= l & ®dav=E, )

1)

The dual form of equations (5) and (7) may be written as

&;©=1 i ® ek,(r) m, @) 0 (10)

zx ukl 1::kl ij an
where

l=g’l_1 m=1:n (12)

L=G M=L:N (13)

In order to obtain the overall behavior of the material using the local constitutive relations
and knowing the microstructure of the composite, two concentration relations are introduced

&, () = Bm(r)zm+b @6

(14)
& O=Ay O +a,©0

To obtain the overall thermomechanical behavior i.e. L and M tensors, one has

& ® =Ly O Ay, OF +2, @ 6]-m; 0 (15)
Applying the averaging operations

5%,- = 1gq ® Ay © El + Ly 8y @ - m, @ 9 (16)
it follows

Liimn = Lija (0 Ay © 5'(17)

Mij = 1ijkl ) ay @ - m,, @)

Similar calculations allow to determine G and N in function of g, n, B and b.

In order to find the concentration tensors A and a, several methods may be proposed. Ne-
vertheless, they constitute only an approximation of the integral equation proposed in the
following section.

D I~ {C tration. T
The general approach is to consider the inhomogeneous solid as a continum medium with
a microstructure satisfying

- The equilibrium equation

&, ®=0 (18)

- The constitutive equation
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&, @ =1y OF O -m, @8 (19)
- The compatibility equation

&)= G+ i) @0

Introducing a homogeneous medium (without -a microstructure) and characterized by its
tangent moduli tensor L° such that

1M =L°+3l()
equations (18) (19) and (20) take the form
Lo, i +[8L ()& 6].=0 21
ijkl uk.lj + [ ijki (l') ekl (l') - mij (I') ]-J = ( )
Using the Green tensor technique, (21) may be transformed into an integral equation [3]

Bm =&+ J'rim @) [8l,,, () & @) - my @) 6] dV" 2)
v

where

- €; Is the strain rate of the homogeneous medium submitted to the same boun-
dary conditions as the effective medium

- 1-‘mnij =1/2 (Gmi.jn + Gni,jm)

- G, is the Green tensor of the infinite medium with L° moduli tensor.

Relation (22) constitutes an integral equation linking the local strain rate £' and the ther-

momechanical loading characterized by &° and 8. To exploit this complex equation, various

approximations have to be applied leading to numerous models. In this work, the self-
consistent approach is developed and applied. This method may be shortly characterized
as follows :

* the interactions between constituents, in the case of one-site scheme, are mo-
delled by interactions between an ellipsoidal inclusion and the homogeneous
equivalent medium L considered as matrix

* the particular choice of L° = L*# is adopted.

The multiple-site version of this approach was established by Berveiller et al [6] and for

elastoplastic metals at large strains, the model was generalized by Lipinski and Berveiller

[7].

Let us now consider a granular medium and suppose that 1, ¢’ and m are piece-wise cons-

tant. The following holds

N
sa@=,8'y o

I=1

N
m@=Y m'y @ @3)
I=l
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Fo= Ze y®

I=1
where y(r) represent N characteristic functions such that

I _ OifreVI 24
y@= {1 if re V!

In order to simplify the considerations, suppose for the moment that 0 = 0. In this case, the
integral equation is rewritten in the form

B =+ Tig Slnn Emn (25)
where
Tgkl V .“.I‘ﬂd (r-r') dVdV' (26)
vy

By definition, L° = L which leads to

. T

e°=E )
and the concentration tensor Al for the I inclusion is
I
K= (Imnkl Tnmmj 811 kl) 28
The tangent moduli tensor L** may be obtained from (17) and (28)
eff
qkl Z FI ijmn mnkl (29)

where F! denotes the volumlc fraction of the considered phase. In the similar manner, one
may determine a' and using (17)

T= 2 F ({ydy-m) “(30)
Expressions (29) and (30) are rather complex ones because of their implicit character.
The proposed theory has been applied to elasticity, thermoelasticity and elastoplasticity of
Al-SiC metal matrix composites.

licati Al-Si i

The composite is considered as a two-phased material composed of a matrix and reinfor-
cements. The first application corresponds to an experimental study by Schneider et al [8].
The properties of the matrix and reinforcements have been deduced from this study [8] and
are presented in Table 1.

The material was extruded and exhibits a small anisotropy. The reinforcements presented
an ellipsoidal aspect elongated in the extrusion direction. The numerical calculations of
Young's modulus in the transversal direction using the self-consistent model are shown in
Fig 1. The results agree very well with the experimental measurements. An accurate model-
ling of the elastic anisotropy has been stated.
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Young's Modulus E | Poissons's ratio v

Al 715 0.3
SiC 430 0.3

Table 1 : Elastic properties of Al-Matrix and SiC reinforcements.

170

350 b

430

310 &

9% b

YOUNG'S MODULUS (GPa)

0

[] H]

)
%SiC

Figure 1 : Comparison of the transversal Young's modulus: (O) calculated by the
self-consistent model, (M) experimentaly obtained by Schneider et al [8] and

determined using (a) Voigt and (b) Reuss models
Next, the thermoelastic behavior of Al-SiC composites the local thermal expansion tensors
have been supposed isotropic both for matrix and SiC (o = 21 106
K1, ag;c = 4 10°¢ K1), Fig 2 presents the evolution of a33°“ component of the effective ther -
mal expansion tensor for four reinforcement shapes and various F',

10° °c™!

ALPHA
o n

o 20 40 60 80

F1%

100

Figure 2 :Evolution of the a4,°"" component of the effective thermal expansion
tensor as a function o the volumic fraction
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The components of the concentration tensors Bgg33 and bgg are plotted in Fig 3 and 4. A
very strong stress concentration is observed in both cases depending on the volume frac-
tion and reinforcements shape.

B3333

L] 20 <0 60 80 400
Fl %
Figure 3 :Evolution of B,;,5 component of the concentration tensor as a func-
tion of the volumxc:?raction and various fiber aspects
The last class of applications concerns the elastoplastic behavior of Al-SiC MMC. The ma-
terial properties are summarized in Table Il.
In this case, the composite is considered as a microinhomogeneous medium with two cons-
tituents
- the elastic and isotropic reinforcements
- the microinhomogeneous polycrystalline matrix composed of grains crystallo
graphically misoriented.

-
@
T

~ abe

éJ"" A-11100
Né4,4- 8-1121
E.. c-117

= D-111

o g}

°

(v

™-Ef

-0

o 20 ) 50 80 100

FI%

Figure 4 :Evolution of by, component of the concentration tensor as a function of
the volumic fraction and various fiber aspects
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SiC Al
Elasticity n p=27559 daN/mm? 2692 daN/mm?
v 0.27 0.3
Plasticity T oo 14 daN/mm¢
slip systems - (111) <110 > (12x)
Hardening - H; =p/250
matrix Hz =y x3
Microstructure Volumic
Fraction F (1-Fp
Form elliposoidal spherical
and (a,b,c)
same orientation 100 crystallograclfhic
orientation orientation (random)

Table Il : Mechanical properties and microstructure of the studied composite

The imposed loading corresponds to a tension test for three volume fractions. The influence
of the reinforcements centents is very pronounced (Fig 5).

The evolution of residual stresses (55 components) for some particular grains of the matrix
and SiC fiber as a function of the volume fraction of SiC and plastic strain is plotted in Fig 6.
The intragranular inhomogeneities appear negligible with respect to the difference of the
mechanical behavior between matrix and fiber.

100 20%

8o |
10%,

60 | ox

40

STRESS [daN/mm?)

20

2 3 4
PLASTIC STRAIN ([X%]

Figure 5 :Tensile curves for 0, 10 and 20% of fibers of spherical shape (a=b=c)
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600

10%
SiC
20%

£33 [daN/mm2]

—_— 0%
———————20%

~190

5 6

2 3 4
PLASTIC STRAIN (%]

Figure 6 :Residual stress (og,) inside the reinforcements and particular grains of

the matrix as a function of the overall plastic strain and volumic fraction

of fibers for ellipsoidal reinforcements (a = b = ¢/10)
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